Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_8_a5, author = {A. A. Magazev and I. V. Shirokov}, title = {Hamiltonian systems in variations and the integration of the {Jacobi} equation on homogeneous spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--53}, publisher = {mathdoc}, number = {8}, year = {2006}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a5/} }
TY - JOUR AU - A. A. Magazev AU - I. V. Shirokov TI - Hamiltonian systems in variations and the integration of the Jacobi equation on homogeneous spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 42 EP - 53 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a5/ LA - ru ID - IVM_2006_8_a5 ER -
%0 Journal Article %A A. A. Magazev %A I. V. Shirokov %T Hamiltonian systems in variations and the integration of the Jacobi equation on homogeneous spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 42-53 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a5/ %G ru %F IVM_2006_8_a5
A. A. Magazev; I. V. Shirokov. Hamiltonian systems in variations and the integration of the Jacobi equation on homogeneous spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 42-53. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a5/
[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. II, Nauka, M., 1981, 416 pp.
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR
[3] Vaisman I., “Second order Hamiltonian vector fields on tangent bundles”, Diff. Geom. and Appl., 5 (1995), 153–170 | DOI | MR | Zbl
[4] Mitric G., Vaisman I., “Poisson structures on tangent bundles”, Diff. Geom. and Appl., 18 (2003), 207–228 | DOI | MR | Zbl
[5] Vorobev Yu. M., “Gamiltonovy struktury sistem v variatsiyakh i simplekticheskie svyaznosti”, Matem. sb., 191:4 (2000), 3–28 | MR
[6] Bolsinov A. V., Iovanovich B., “Integriruemye geodezicheskie potoki na odnorodnykh prostranstvakh”, Matem. sb., 192:7 (2001), 21–40 | MR | Zbl
[7] Magazev A. A., Shirokov I. V., “Integrirovanie geodezicheskikh potokov na odnorodnykh prostranstvakh. Sluchai dikoi gruppy Li”, Teor. i matem. fiz., 136:3 (2003), 365–379 | MR
[8] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1985, 264 pp. | MR
[9] Trofimov V. V., Fomenko A. T., Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995, 439 pp. | MR | Zbl
[10] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer-Verlag, 1993, 434 pp. | MR
[11] Shirokov I. V., “Tozhdestva i invariantnye operatory na odnorodnykh prostranstvakh”, Teor. i matem. fiz., 126:3 (2001), 393–408 | MR | Zbl
[12] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991, 368 pp. | MR | Zbl
[13] Shirokov I. V., “Koordinaty Darbu na $\mathrm{K}$-orbitakh i spektry operatorov Kazimira na gruppakh Li”, Teor. i matem. fiz., 123:3 (2000), 407–423 | MR | Zbl