On the classification of equivolume mappings of pseudo-Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_8_a2,
     author = {T. V. Zudina and S. E. Stepanov},
     title = {On the classification of equivolume mappings of {pseudo-Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--28},
     publisher = {mathdoc},
     number = {8},
     year = {2006},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/}
}
TY  - JOUR
AU  - T. V. Zudina
AU  - S. E. Stepanov
TI  - On the classification of equivolume mappings of pseudo-Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 19
EP  - 28
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/
LA  - ru
ID  - IVM_2006_8_a2
ER  - 
%0 Journal Article
%A T. V. Zudina
%A S. E. Stepanov
%T On the classification of equivolume mappings of pseudo-Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 19-28
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/
%G ru
%F IVM_2006_8_a2
T. V. Zudina; S. E. Stepanov. On the classification of equivolume mappings of pseudo-Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 19-28. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/

[1] Stepanov S. E., “The seven classes of equiaffine mappings of pseudo-Riemannian manifolds”, Abstracts of Internat. Conf. on Diff. Geom. and Appl. (Prague, August 30–September 3, 2004), Charles University in Prague, Czech Republic, 2004, 46–47

[2] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR

[3] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990, 703 pp. | MR | Zbl

[4] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971, 232 pp.

[5] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 255 pp. | MR | Zbl

[6] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948, 316 pp.

[7] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Mir, M., 1947, 347 pp.

[8] Besse A., Chetyrekhmernaya rimanova geometriya, Mir, M., 1985, 334 pp. | MR

[9] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teoretich. i matem. fiz., 111:1 (1997), 32–43 | MR | Zbl

[10] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. and Geom., 24:3 (2003), 291–299 | DOI | MR | Zbl

[11] Shapiro Ya. L., “Ob odnom klasse rimanovykh prostranstv”, Tr. semin. po vektorn. i tenzorn. analizu, no. XII, 1963, 203–212 | Zbl

[12] Shapiro Ya. L., “O nekotorykh polyakh geodezicheskikh konusov”, DAN SSSR, 39:1 (1943), 6–10

[13] Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982, 416 pp. | MR

[14] Reinhart B. L., Differential geometry of foliations, Springer-Verlag, Berlin–New York, 1983, 194 pp. | MR | Zbl

[15] Stepanov S. E., “$O(n)\times O(m-n)$-struktury na $m$-mernykh mnogoobraziyakh i submersii”, Algebra i analiz, 7:6 (1995), 188–204 | MR | Zbl

[16] Stepanov S. E., “Integralnaya formula dlya kompaktnogo mnogoobraziya s rimanovoi strukturoi pochti proizvedeniya”, Izv. vuzov. Matematika, 1994, no. 7, 69–73 | MR | Zbl

[17] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.

[18] Nijenhuis A., “A note on first integrals of geodesies”, Proc. Nederl. Akad. Wet., Ser. A, 70:2 (1967), 141–145 | MR | Zbl

[19] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vuzov. Matematika, 1996, no. 9, 53–59 | MR | Zbl

[20] Yano K., “Union curves and subpaths”, Math. J., 1 (1948), 51–59 | MR | Zbl

[21] Otsuki T., Tashiro Y., “On curves in Kahlerian space”, Math. J. Okayama Univ., 4 (1954), 54–58 | MR

[22] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teoriya otnositelnosti, no. 4–5, Izd. Kazansk. un-ta, Kazan, 1968, 7–21

[23] Nicolescu Liviu, “Les espaces de Riemann en representation subgeodesique”, Tensor, N.S., 32:2 (1978), 182–187 | MR

[24] Shirokov P. A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v Riemann'ovykh prostranstvakh”, Izv. fiz.-matem. o-va, Kazan, 25 (1925), 86–114