Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_8_a2, author = {T. V. Zudina and S. E. Stepanov}, title = {On the classification of equivolume mappings of {pseudo-Riemannian} manifolds}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {19--28}, publisher = {mathdoc}, number = {8}, year = {2006}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/} }
TY - JOUR AU - T. V. Zudina AU - S. E. Stepanov TI - On the classification of equivolume mappings of pseudo-Riemannian manifolds JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 19 EP - 28 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/ LA - ru ID - IVM_2006_8_a2 ER -
T. V. Zudina; S. E. Stepanov. On the classification of equivolume mappings of pseudo-Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 19-28. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a2/
[1] Stepanov S. E., “The seven classes of equiaffine mappings of pseudo-Riemannian manifolds”, Abstracts of Internat. Conf. on Diff. Geom. and Appl. (Prague, August 30–September 3, 2004), Charles University in Prague, Czech Republic, 2004, 46–47
[2] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR
[3] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990, 703 pp. | MR | Zbl
[4] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971, 232 pp.
[5] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 255 pp. | MR | Zbl
[6] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948, 316 pp.
[7] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Mir, M., 1947, 347 pp.
[8] Besse A., Chetyrekhmernaya rimanova geometriya, Mir, M., 1985, 334 pp. | MR
[9] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teoretich. i matem. fiz., 111:1 (1997), 32–43 | MR | Zbl
[10] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. and Geom., 24:3 (2003), 291–299 | DOI | MR | Zbl
[11] Shapiro Ya. L., “Ob odnom klasse rimanovykh prostranstv”, Tr. semin. po vektorn. i tenzorn. analizu, no. XII, 1963, 203–212 | Zbl
[12] Shapiro Ya. L., “O nekotorykh polyakh geodezicheskikh konusov”, DAN SSSR, 39:1 (1943), 6–10
[13] Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982, 416 pp. | MR
[14] Reinhart B. L., Differential geometry of foliations, Springer-Verlag, Berlin–New York, 1983, 194 pp. | MR | Zbl
[15] Stepanov S. E., “$O(n)\times O(m-n)$-struktury na $m$-mernykh mnogoobraziyakh i submersii”, Algebra i analiz, 7:6 (1995), 188–204 | MR | Zbl
[16] Stepanov S. E., “Integralnaya formula dlya kompaktnogo mnogoobraziya s rimanovoi strukturoi pochti proizvedeniya”, Izv. vuzov. Matematika, 1994, no. 7, 69–73 | MR | Zbl
[17] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.
[18] Nijenhuis A., “A note on first integrals of geodesies”, Proc. Nederl. Akad. Wet., Ser. A, 70:2 (1967), 141–145 | MR | Zbl
[19] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vuzov. Matematika, 1996, no. 9, 53–59 | MR | Zbl
[20] Yano K., “Union curves and subpaths”, Math. J., 1 (1948), 51–59 | MR | Zbl
[21] Otsuki T., Tashiro Y., “On curves in Kahlerian space”, Math. J. Okayama Univ., 4 (1954), 54–58 | MR
[22] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teoriya otnositelnosti, no. 4–5, Izd. Kazansk. un-ta, Kazan, 1968, 7–21
[23] Nicolescu Liviu, “Les espaces de Riemann en representation subgeodesique”, Tensor, N.S., 32:2 (1978), 182–187 | MR
[24] Shirokov P. A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v Riemann'ovykh prostranstvakh”, Izv. fiz.-matem. o-va, Kazan, 25 (1925), 86–114