A positive solution of a two-point boundary value problem for a fourth-order nonlinear ordinary differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_8_a0,
     author = {E. I. Abduragimov},
     title = {A positive solution of a two-point boundary value problem for a fourth-order nonlinear ordinary differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--6},
     publisher = {mathdoc},
     number = {8},
     year = {2006},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - A positive solution of a two-point boundary value problem for a fourth-order nonlinear ordinary differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 3
EP  - 6
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a0/
LA  - ru
ID  - IVM_2006_8_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T A positive solution of a two-point boundary value problem for a fourth-order nonlinear ordinary differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 3-6
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a0/
%G ru
%F IVM_2006_8_a0
E. I. Abduragimov. A positive solution of a two-point boundary value problem for a fourth-order nonlinear ordinary differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2006), pp. 3-6. https://geodesic-test.mathdoc.fr/item/IVM_2006_8_a0/

[1] Abduragimov E. I., “O edinstvennosti polozhitelnogo resheniya odnoi nelineinoi dvukhtochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 2002, no. 6, 3–6 | MR | Zbl

[2] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 542 pp. | MR

[3] Mikusinski J., “Ob uravnenii $x^{(n)}+A(t)x=0$”, Ann. Polon. Math., 1:2 (1955), 207–221 | MR | Zbl