On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2005_8_a2,
     author = {A. N. Danilin and E. B. Kuznetsov and V. I. Shalashilin},
     title = {On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--26},
     publisher = {mathdoc},
     number = {8},
     year = {2005},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/}
}
TY  - JOUR
AU  - A. N. Danilin
AU  - E. B. Kuznetsov
AU  - V. I. Shalashilin
TI  - On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2005
SP  - 14
EP  - 26
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/
LA  - ru
ID  - IVM_2005_8_a2
ER  - 
%0 Journal Article
%A A. N. Danilin
%A E. B. Kuznetsov
%A V. I. Shalashilin
%T On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2005
%P 14-26
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/
%G ru
%F IVM_2005_8_a2
A. N. Danilin; E. B. Kuznetsov; V. I. Shalashilin. On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 14-26. https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/

[1] Lure A.I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, 824 pp. | MR

[2] Bathe K.-J., Wilson E.L., Numerical methods in finite element analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976, 528 pp. | Zbl

[3] Danilin A.N., “Nelineinye uravneniya dvizheniya gibkikh sterzhnevykh sistem”, Izv. RAN. MTT, 1994, no. 1, 177–188

[4] Danilin A.N., “Ploskaya zadacha dinamiki kosmicheskikh sistem s gibkimi odnomernymi elementami”, Vestn. MAI, 2:1 (1995), 61–68

[5] Shklyarchuk F.N., “Nelineinye i linearizovannye uravneniya dvizheniya uprugikh kosmicheskikh konstruktsii”, Izv. RAN. MTT, 1996, no. 1, 161–175

[6] Danilin A.N., Grishanina T.V., Shklyarchuk F.N., Buzlaev D.V., “Dynamics of a space vehicle with elastic deploying tether”, Comput. Structures, 72 (1999), 141–147 | DOI | Zbl

[7] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 331 pp. | MR | Zbl

[8] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984, 271 pp. | MR

[9] Grigolyuk E.I., Shalashilin V.I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988, 232 pp. | MR | Zbl

[10] Shalashilin V.I., Kuznetsov E.B., “Zadacha Koshi dlya nelineino deformiruemykh sistem kak zadacha prodolzheniya resheniya po parametru”, Dokl. RAN, 329:4 (1993), 426–428 | MR | Zbl

[11] Kuznetsov E.B., Shalashilin V.I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po parametru”, Zhurn. vychisl. matem. i matem. fiz., 33:12 (1993), 1792–1805 | MR | Zbl

[12] Shalashilin V.I., Kuznetsov E.B., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. RAN, 334:5 (1994), 566–568 | MR | Zbl

[13] Kuznetsov E.B., Shalashilin V.I., “Zadacha Koshi dlya mekhanicheskikh sistem s konechnym chislom stepenei svobody kak zadacha prodolzheniya po nailuchshemu parametru”, PMM, 58:6 (1994), 14–21 | MR

[14] Shalashilin V.I., Kuznetsov E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Izd-vo “Editorial URSS”, M., 1999, 222 pp. | MR

[15] Danilin A.N., Shalashilin V.I., “O parametrizatsii nelineinykh uravnenii deformirovaniya tverdogo tela”, Izv. RAN. MTT, 2000, no. 1, 82–92

[16] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[17] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[18] Bakhvalov N.S., Chislennye metody, Nauka, M., 1973, 631 pp. | MR | Zbl

[19] Danilin A.N., Kuznetsov E.B., Shalashilin V.I., “The best parameterization and numerical solution of the Cauchy problem for a system of ordinary differential equations of the second order”, Funct. Different. Equations, 8:1–2 (2001), 141–146 | MR | Zbl

[20] Danilin A.N., Volkov-Bogorodskii D.B., “O neyavnykh metodakh integrirovaniya parametrizovannykh uravnenii nelineinykh dinamicheskikh sistem”, Vestn. MAI, 8:2 (2001), 40–52 | MR