Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2005_8_a2, author = {A. N. Danilin and E. B. Kuznetsov and V. I. Shalashilin}, title = {On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {14--26}, publisher = {mathdoc}, number = {8}, year = {2005}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/} }
TY - JOUR AU - A. N. Danilin AU - E. B. Kuznetsov AU - V. I. Shalashilin TI - On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2005 SP - 14 EP - 26 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/ LA - ru ID - IVM_2005_8_a2 ER -
%0 Journal Article %A A. N. Danilin %A E. B. Kuznetsov %A V. I. Shalashilin %T On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2005 %P 14-26 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/ %G ru %F IVM_2005_8_a2
A. N. Danilin; E. B. Kuznetsov; V. I. Shalashilin. On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2005), pp. 14-26. https://geodesic-test.mathdoc.fr/item/IVM_2005_8_a2/
[1] Lure A.I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, 824 pp. | MR
[2] Bathe K.-J., Wilson E.L., Numerical methods in finite element analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976, 528 pp. | Zbl
[3] Danilin A.N., “Nelineinye uravneniya dvizheniya gibkikh sterzhnevykh sistem”, Izv. RAN. MTT, 1994, no. 1, 177–188
[4] Danilin A.N., “Ploskaya zadacha dinamiki kosmicheskikh sistem s gibkimi odnomernymi elementami”, Vestn. MAI, 2:1 (1995), 61–68
[5] Shklyarchuk F.N., “Nelineinye i linearizovannye uravneniya dvizheniya uprugikh kosmicheskikh konstruktsii”, Izv. RAN. MTT, 1996, no. 1, 161–175
[6] Danilin A.N., Grishanina T.V., Shklyarchuk F.N., Buzlaev D.V., “Dynamics of a space vehicle with elastic deploying tether”, Comput. Structures, 72 (1999), 141–147 | DOI | Zbl
[7] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 331 pp. | MR | Zbl
[8] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984, 271 pp. | MR
[9] Grigolyuk E.I., Shalashilin V.I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988, 232 pp. | MR | Zbl
[10] Shalashilin V.I., Kuznetsov E.B., “Zadacha Koshi dlya nelineino deformiruemykh sistem kak zadacha prodolzheniya resheniya po parametru”, Dokl. RAN, 329:4 (1993), 426–428 | MR | Zbl
[11] Kuznetsov E.B., Shalashilin V.I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po parametru”, Zhurn. vychisl. matem. i matem. fiz., 33:12 (1993), 1792–1805 | MR | Zbl
[12] Shalashilin V.I., Kuznetsov E.B., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. RAN, 334:5 (1994), 566–568 | MR | Zbl
[13] Kuznetsov E.B., Shalashilin V.I., “Zadacha Koshi dlya mekhanicheskikh sistem s konechnym chislom stepenei svobody kak zadacha prodolzheniya po nailuchshemu parametru”, PMM, 58:6 (1994), 14–21 | MR
[14] Shalashilin V.I., Kuznetsov E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Izd-vo “Editorial URSS”, M., 1999, 222 pp. | MR
[15] Danilin A.N., Shalashilin V.I., “O parametrizatsii nelineinykh uravnenii deformirovaniya tverdogo tela”, Izv. RAN. MTT, 2000, no. 1, 82–92
[16] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[17] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[18] Bakhvalov N.S., Chislennye metody, Nauka, M., 1973, 631 pp. | MR | Zbl
[19] Danilin A.N., Kuznetsov E.B., Shalashilin V.I., “The best parameterization and numerical solution of the Cauchy problem for a system of ordinary differential equations of the second order”, Funct. Different. Equations, 8:1–2 (2001), 141–146 | MR | Zbl
[20] Danilin A.N., Volkov-Bogorodskii D.B., “O neyavnykh metodakh integrirovaniya parametrizovannykh uravnenii nelineinykh dinamicheskikh sistem”, Vestn. MAI, 8:2 (2001), 40–52 | MR