Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_8_a6, author = {N. Ya. Tikhonenko}, title = {Finite-dimensional methods for the approximate solution of convolution-type linear equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--80}, publisher = {mathdoc}, number = {8}, year = {2004}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2004_8_a6/} }
TY - JOUR AU - N. Ya. Tikhonenko TI - Finite-dimensional methods for the approximate solution of convolution-type linear equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 71 EP - 80 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2004_8_a6/ LA - ru ID - IVM_2004_8_a6 ER -
N. Ya. Tikhonenko. Finite-dimensional methods for the approximate solution of convolution-type linear equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2004), pp. 71-80. https://geodesic-test.mathdoc.fr/item/IVM_2004_8_a6/
[1] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1998, 295 pp. | MR
[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl
[3] Prësdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979, 493 pp. | MR
[4] Koiter W. T., “Approximate solution of Wiener–Hopf type integrale equations with applications”, Proc. Koninkl. Nederl. Akad. wetenschap, 57:5 (1954), 568–579
[5] Popov G. Ya., “K resheniyu zadach teorii uprugosti metodom faktorizatsii”, PMM, 38:1 (1974), 178–183 | Zbl
[6] Popov G. Ya., Kerekesha P. V., Kruglov V. E., Metod faktorizatsii i ego chislennaya realizatsiya, Izd-vo Odessk. un-ta, Odessa, 1976, 82 pp.
[7] Cherskii Yu. I., “Dve teoremy ob otsenke pogreshnosti i nekotorye ikh prilozheniya”, DAN SSSR, 150:2 (1963), 271–274
[8] Cherskii Yu. I., “Pro nablizhene rozv'yazannya rivnyannya Vinera–Khopfa pershogo rodu”, DAN URSR, 8 (1966), 992–995
[9] Cherskii Yu. I., “Priblizhennoe reshenie uravneniya Vinera–Khopfa v odnom isklyuchitelnom sluchae”, Differents. uravneniya, 2:8 (1966), 1093–1100
[10] Tikhonenko M. Ya., “Do nablizhenogo rozv'yazku integralnikh ta integro-diferentsialnikh rivnyan z riznitsevimi yadrami v uzagalnenikh funktsiyakh”, DAN URSR, 1972, no. 6, 536–539 | Zbl
[11] Tikhonenko N. Ya., “O metode priblizhennoi faktorizatsii”, Izv. vuzov. Matematika, 1976, no. 4, 74–86 | Zbl
[12] Ivanov V. V., Karagodova E. A., “Priblizhennoe reshenie integralnykh uravnenii tipa svertki metodom Galërkina”, Ukr. matem. zhurn., 13:1 (1961), 28–38 | MR | Zbl
[13] Karagodova E. A., “K priblizhennomu resheniyu uravnenii tipa svertki”, Vychisl. matem., 1, Izd-vo KGU, Kiev, 1965, 146–152 | MR
[14] Tikhonenko N. Ya., “O ryadakh Fure po sisteme ratsionalnykh funktsii na veschestvennoi osi i nekotorye prilozheniya”, Visnik Kiïvsk. un-tu. Ser. fiz.-matem. nauk, 1998, no. 2, 127–137 | Zbl
[15] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, 1980, 232 pp. | MR
[16] Ivanov V. V., Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Nauk. dumka, Kiev, 1968, 287 pp. | MR
[17] Tikhonenko N. Ya., Svyazhina N. N., “O kompaktnosti kommutatora na veschestvennoi osi”, Izv. vuzov. Matematika, 1996, no. 10, 83–87 | MR | Zbl
[18] Tikhonenko N. Ya., Lisitsina I. N., “Interpolyatsiya funktsii na veschestvennoi osi i prilozheniya”, Visnik Kiïvsk. un-tu. Ser. fiz.-matem. nauk, 1998, no. 2, 77–86
[19] Grinberg G. A., Fok V. A., Issledovaniya po rasprostraneniyu radiovoln, t. 2, Gostekhizdat, M., 1948