On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_1_a8,
     author = {L. D. Popov},
     title = {On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--79},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 70
EP  - 79
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/
LA  - ru
ID  - IVM_2004_1_a8
ER  - 
%0 Journal Article
%A L. D. Popov
%T On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 70-79
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/
%G ru
%F IVM_2004_1_a8
L. D. Popov. On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 70-79. https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/

[1] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR

[2] Glovinski R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 574 pp. | MR

[3] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988, 488 pp. | MR | Zbl

[4] Harker P. T., Pang J.-S., “Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48 (1990), 161–220 | DOI | MR | Zbl

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 223 pp. | MR

[6] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002, 823 pp.

[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 307 pp. | MR

[8] Bakushinskii A. B., Polyak B. T., “O reshenii variatsionnykh neravenstv”, DAN SSSR, 219:5 (1974), 1038–1041

[9] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 127 pp. | MR

[10] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989, 197 pp.

[11] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, Izd-vo VTs RAN, M., 2002, 86 pp.

[12] Antipin A. S., Vasilev F. P., “Regulyarizovannyi ekstragradientnyi metod dlya resheniya variatsionnykh neravenstv”, Vychisl. metody i programmirov, 3:2 (2002), 144–150

[13] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd-vo Mariisk. un-ta, Ioshkar-Ola, 1998, 292 pp.

[14] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i matem. metody., 12:4 (1976), 747–756 | MR | Zbl

[15] Popov L. D., “Modifikatsiya metoda Errou–Gurvitsa poiska sedlovykh tochek”, Matem. zametki, 28:5 (1980), 777–784 | MR | Zbl

[16] Popov L. D., “Ob odnoi modifikatsii metoda Errou–Gurvitsa poiska sedlovykh tochek s adaptivnoi protseduroi opredeleniya iteratsionnogo shaga”, Klassifikatsiya i optimizatsiya v zadachakh upravleniya, Uralsk. NTs AN SSSR, Sverdlovsk, 1981, 52–56

[17] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[18] Popov L. D., “O primenenii metoda proektsii dlya nakhozhdeniya approksimatsionnykh kornei monotonnykh otobrazhenii”, Izv. vuzov. Matematika, 1995, no. 12, 74–80 | MR | Zbl