Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_1_a8, author = {L. D. Popov}, title = {On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {70--79}, publisher = {mathdoc}, number = {1}, year = {2004}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/} }
TY - JOUR AU - L. D. Popov TI - On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 70 EP - 79 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/ LA - ru ID - IVM_2004_1_a8 ER -
%0 Journal Article %A L. D. Popov %T On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 70-79 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/ %G ru %F IVM_2004_1_a8
L. D. Popov. On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 70-79. https://geodesic-test.mathdoc.fr/item/IVM_2004_1_a8/
[1] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR
[2] Glovinski R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 574 pp. | MR
[3] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988, 488 pp. | MR | Zbl
[4] Harker P. T., Pang J.-S., “Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48 (1990), 161–220 | DOI | MR | Zbl
[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 223 pp. | MR
[6] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002, 823 pp.
[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 307 pp. | MR
[8] Bakushinskii A. B., Polyak B. T., “O reshenii variatsionnykh neravenstv”, DAN SSSR, 219:5 (1974), 1038–1041
[9] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 127 pp. | MR
[10] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989, 197 pp.
[11] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, Izd-vo VTs RAN, M., 2002, 86 pp.
[12] Antipin A. S., Vasilev F. P., “Regulyarizovannyi ekstragradientnyi metod dlya resheniya variatsionnykh neravenstv”, Vychisl. metody i programmirov, 3:2 (2002), 144–150
[13] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd-vo Mariisk. un-ta, Ioshkar-Ola, 1998, 292 pp.
[14] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i matem. metody., 12:4 (1976), 747–756 | MR | Zbl
[15] Popov L. D., “Modifikatsiya metoda Errou–Gurvitsa poiska sedlovykh tochek”, Matem. zametki, 28:5 (1980), 777–784 | MR | Zbl
[16] Popov L. D., “Ob odnoi modifikatsii metoda Errou–Gurvitsa poiska sedlovykh tochek s adaptivnoi protseduroi opredeleniya iteratsionnogo shaga”, Klassifikatsiya i optimizatsiya v zadachakh upravleniya, Uralsk. NTs AN SSSR, Sverdlovsk, 1981, 52–56
[17] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[18] Popov L. D., “O primenenii metoda proektsii dlya nakhozhdeniya approksimatsionnykh kornei monotonnykh otobrazhenii”, Izv. vuzov. Matematika, 1995, no. 12, 74–80 | MR | Zbl