The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_8_a8,
     author = {E. M. Bogatov and O. M. Penkin},
     title = {The {Fourier} method in the {Cauchy} problem for a fourth-order equation on stratified sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {8},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/}
}
TY  - JOUR
AU  - E. M. Bogatov
AU  - O. M. Penkin
TI  - The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 67
EP  - 71
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/
LA  - ru
ID  - IVM_2003_8_a8
ER  - 
%0 Journal Article
%A E. M. Bogatov
%A O. M. Penkin
%T The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 67-71
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/
%G ru
%F IVM_2003_8_a8
E. M. Bogatov; O. M. Penkin. The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 67-71. https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/

[1] Courant R., “Über die Anwendung der Variationrechnung in der Theorie der Eigenschwingungen und über neue Klassen von Funktionalgleichungen”, Acta Math., 40 (1926), 1–68 | DOI | MR

[2] Ali Mehmeti F., von Below J., Nicaise S. (eds.), Partial differential equations on multistructures, Marcel Dekker, 2001, 258 pp. | MR

[3] Pokornyi Yu. V., Chernikova L. N., “O kraevoi zadache na grafe dlya $2$-zvennoi tsepochki sterzhnei”, Nelin. koleb., Izhevsk, 1981, 39–45

[4] Pokornyi Yu. V., Penkin O. M., “O teoremakh sravneniya dlya uravnenii na grafakh”, Differents. uravneniya, 25:7 (1989), 1141–1150 | MR

[5] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[6] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl

[7] Penkin O. M., “O printsipe maksimuma dlya ellipticheskogo uravneniya na dvumernom kletochnom komplekse”, Dokl. RAN, 352:4 (1997), 462–465 | MR | Zbl

[8] Penkin O. M., Pokornyi Yu. V., “O differentsialnykh neravenstvakh dlya ellipticheskikh uravnenii na slozhnykh mnogoobraziyakh”, Dokl. RAN, 360:4 (1998), 456–458 | MR | Zbl

[9] Penkin O. M., Pokornyi Yu. V., “O nesovmestnykh neravenstvakh dlya ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR | Zbl

[10] Penkin O. M., Bogatov E. M., “O slaboi razreshimosti zadachi Dirikhle na stratifitsirovannykh mnozhestvakh”, Matem. zametki, 68:6 (2000), 874–886 | MR | Zbl

[11] Bogatov E. M., O razreshimosti ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh, Dis. ...kand. fiz.-matem. nauk, Voronezh, 2000, 91 pp. | Zbl

[12] Pokornyi Yu. V., “O znakoregulyarnykh funktsiyakh Grina nekotorykh neklassicheskikh zadach”, UMN, 36:4 (1981), 205–206

[13] Gavrilov A. A., Nicaise S., Penkin O. M., Poincare's inequality on stratifies sets and applications, Raport de recherche 01.2, Universite de Valencienes, P. 1–20

[14] Gavrilov A. A., Penkin O. M., “Slabyi printsip maksimuma dlya ellipticheskogo operatora na stratifitsirovannom mnozhestve”, Tr. shkoly “Sovremennye metody v teorii kraevykh zadach”, Ch. 1, Voronezh, 2000, 48–56