Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_8_a8, author = {E. M. Bogatov and O. M. Penkin}, title = {The {Fourier} method in the {Cauchy} problem for a fourth-order equation on stratified sets}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--71}, publisher = {mathdoc}, number = {8}, year = {2003}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/} }
TY - JOUR AU - E. M. Bogatov AU - O. M. Penkin TI - The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 67 EP - 71 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/ LA - ru ID - IVM_2003_8_a8 ER -
%0 Journal Article %A E. M. Bogatov %A O. M. Penkin %T The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 67-71 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/ %G ru %F IVM_2003_8_a8
E. M. Bogatov; O. M. Penkin. The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 67-71. https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a8/
[1] Courant R., “Über die Anwendung der Variationrechnung in der Theorie der Eigenschwingungen und über neue Klassen von Funktionalgleichungen”, Acta Math., 40 (1926), 1–68 | DOI | MR
[2] Ali Mehmeti F., von Below J., Nicaise S. (eds.), Partial differential equations on multistructures, Marcel Dekker, 2001, 258 pp. | MR
[3] Pokornyi Yu. V., Chernikova L. N., “O kraevoi zadache na grafe dlya $2$-zvennoi tsepochki sterzhnei”, Nelin. koleb., Izhevsk, 1981, 39–45
[4] Pokornyi Yu. V., Penkin O. M., “O teoremakh sravneniya dlya uravnenii na grafakh”, Differents. uravneniya, 25:7 (1989), 1141–1150 | MR
[5] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl
[6] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl
[7] Penkin O. M., “O printsipe maksimuma dlya ellipticheskogo uravneniya na dvumernom kletochnom komplekse”, Dokl. RAN, 352:4 (1997), 462–465 | MR | Zbl
[8] Penkin O. M., Pokornyi Yu. V., “O differentsialnykh neravenstvakh dlya ellipticheskikh uravnenii na slozhnykh mnogoobraziyakh”, Dokl. RAN, 360:4 (1998), 456–458 | MR | Zbl
[9] Penkin O. M., Pokornyi Yu. V., “O nesovmestnykh neravenstvakh dlya ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR | Zbl
[10] Penkin O. M., Bogatov E. M., “O slaboi razreshimosti zadachi Dirikhle na stratifitsirovannykh mnozhestvakh”, Matem. zametki, 68:6 (2000), 874–886 | MR | Zbl
[11] Bogatov E. M., O razreshimosti ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh, Dis. ...kand. fiz.-matem. nauk, Voronezh, 2000, 91 pp. | Zbl
[12] Pokornyi Yu. V., “O znakoregulyarnykh funktsiyakh Grina nekotorykh neklassicheskikh zadach”, UMN, 36:4 (1981), 205–206
[13] Gavrilov A. A., Nicaise S., Penkin O. M., Poincare's inequality on stratifies sets and applications, Raport de recherche 01.2, Universite de Valencienes, P. 1–20
[14] Gavrilov A. A., Penkin O. M., “Slabyi printsip maksimuma dlya ellipticheskogo operatora na stratifitsirovannom mnozhestve”, Tr. shkoly “Sovremennye metody v teorii kraevykh zadach”, Ch. 1, Voronezh, 2000, 48–56