On the construction of a degree theory for completely continuous and Fredholm sections of Banach vector bundles
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_8_a0,
     author = {Yu. G. Borisovich and A. A. Demchenko},
     title = {On the construction of a degree theory for completely continuous and {Fredholm} sections of {Banach} vector bundles},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--6},
     publisher = {mathdoc},
     number = {8},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a0/}
}
TY  - JOUR
AU  - Yu. G. Borisovich
AU  - A. A. Demchenko
TI  - On the construction of a degree theory for completely continuous and Fredholm sections of Banach vector bundles
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 3
EP  - 6
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a0/
LA  - ru
ID  - IVM_2003_8_a0
ER  - 
%0 Journal Article
%A Yu. G. Borisovich
%A A. A. Demchenko
%T On the construction of a degree theory for completely continuous and Fredholm sections of Banach vector bundles
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 3-6
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a0/
%G ru
%F IVM_2003_8_a0
Yu. G. Borisovich; A. A. Demchenko. On the construction of a degree theory for completely continuous and Fredholm sections of Banach vector bundles. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 3-6. https://geodesic-test.mathdoc.fr/item/IVM_2003_8_a0/

[1] Sapronov Yu. I., Smolyanov V. A., “Obobschennaya reduktsiya Kachchiopoli i bifurkatsii reshenii uravnenii pri razrusheniyakh nepreryvnykh simmetrii”, Matem. modeli i operatornye uravneniya, Voronezh, 2001, 125–138

[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979, 759 pp. | MR

[3] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970, 442 pp.

[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 511 pp. | MR

[5] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 204 pp.

[6] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere-Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl