Comparison of two regularizing algorithms for the solution of a coefficient inverse problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2003), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_5_a0,
     author = {P. G. Danilaev},
     title = {Comparison of two regularizing algorithms for the solution of a coefficient inverse problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {5},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2003_5_a0/}
}
TY  - JOUR
AU  - P. G. Danilaev
TI  - Comparison of two regularizing algorithms for the solution of a coefficient inverse problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 3
EP  - 8
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2003_5_a0/
LA  - ru
ID  - IVM_2003_5_a0
ER  - 
%0 Journal Article
%A P. G. Danilaev
%T Comparison of two regularizing algorithms for the solution of a coefficient inverse problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 3-8
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2003_5_a0/
%G ru
%F IVM_2003_5_a0
P. G. Danilaev. Comparison of two regularizing algorithms for the solution of a coefficient inverse problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2003), pp. 3-8. https://geodesic-test.mathdoc.fr/item/IVM_2003_5_a0/

[1] Klibanov M. V., “Edinstvennost resheniya dvukh obratnykh zadach dlya sistemy Maksvella”, Zhurn. vychisl. matem. i matem. fiz., 26:7 (1986), 1063–1071 | MR

[2] Klibanov M. V., “Obratnye zadachi v “tselom” i karlemanovskie otsenki”, Differents. uravneniya, 20:6 (1984), 1035–1041 | MR | Zbl

[3] Klibanov M. V., “Edinstvennost v tselom obratnykh zadach dlya odnogo klassa differentsialnykh uravnenii”, Differents. uravneniya, 20:11 (1984), 1947–1953 | MR | Zbl

[4] Klibanov M. V., Danilaev P. G., “O reshenii koeffitsientnykh obratnykh zadach metodom kvaziobrascheniya”, DAN SSSR, 310:3 (1990), 528–532 | MR | Zbl

[5] Danilaev P. G., Koeffitsientnye obratnye zadachi dlya uravnenii parabolicheskogo tipa i ikh prilozheniya, UNIPRESS, Kazan, 1998, 128 pp.

[6] Imanuvilov O. Ju., Yamamoto M., “Lipschitz stability in inverse parabolic problems by the Carleman estimate”, Inverse Problems, 14 (1998), 1229–1245 | DOI | MR | Zbl

[7] Klibanov M. V., “Inverse problems and Carleman estimates”, Inverse Problems, 8 (1992), 575–596 | DOI | MR | Zbl

[8] Fursikov A. V., Imanuvilov O. Ju., Controllability of evolution equations, Lectures Notes, 34, Seoul National University, Seoul, Korea, 1996 | MR | Zbl

[9] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970, 336 pp. | MR | Zbl

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl

[11] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp. | MR