Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_1_a6, author = {Yu. N. Karamzin and S. V. Polyakov and I. V. Popov}, title = {Difference schemes for parabolic equations on triangular grids}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {53--59}, publisher = {mathdoc}, number = {1}, year = {2003}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2003_1_a6/} }
TY - JOUR AU - Yu. N. Karamzin AU - S. V. Polyakov AU - I. V. Popov TI - Difference schemes for parabolic equations on triangular grids JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 53 EP - 59 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2003_1_a6/ LA - ru ID - IVM_2003_1_a6 ER -
Yu. N. Karamzin; S. V. Polyakov; I. V. Popov. Difference schemes for parabolic equations on triangular grids. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2003), pp. 53-59. https://geodesic-test.mathdoc.fr/item/IVM_2003_1_a6/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[2] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996, 276 pp.
[3] Fryazinov I. V., “Metod balansa i variatsionno-raznostnye skhemy”, Differents. uravneniya, 16:7 (1980), 1332–1343 | MR | Zbl
[4] Atluri S. N., Gallagher R. H., Zienkiewitz O. C., Hybrid and mixed finite element methods, John Wiley Sons, New York, 1983, 582 pp. | MR | Zbl
[5] Popov I. V., Polyakov S. V., “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl