Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_8_a3, author = {Kh. Lomp and M. F. Nasrutdinov and I. I. Sakhaev}, title = {On projective modules with a~semilocal endomorphism ring}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {23--29}, publisher = {mathdoc}, number = {8}, year = {2002}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a3/} }
TY - JOUR AU - Kh. Lomp AU - M. F. Nasrutdinov AU - I. I. Sakhaev TI - On projective modules with a~semilocal endomorphism ring JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 23 EP - 29 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a3/ LA - ru ID - IVM_2002_8_a3 ER -
Kh. Lomp; M. F. Nasrutdinov; I. I. Sakhaev. On projective modules with a~semilocal endomorphism ring. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2002), pp. 23-29. https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a3/
[1] Lomp C., “On semilocal modules and rings”, Comm. Algebra, 27:4 (1999), 1921–1935 | DOI | MR | Zbl
[2] Lazard D., “Liberte des gros modules projectifs”, J. Algebra, 31 (1974), 437–451 | DOI | MR | Zbl
[3] Zöschinger H., “Projektive Moduln mit endlich erzeugten Radikalfaktormodul”, Math. Ann., 255 (1981), 199–206 | DOI | MR | Zbl
[4] Sakhaev I. I., “O konechnoi porozhdennosti proektivnykh modulei”, Izv. vuzov. Matematika, 1977, no. 9, 69–79 | Zbl
[5] Sakhaev I. I., “O proektivnosti konechno porozhdennykh ploskikh modulei nad polulokalnymi koltsami”, Matem. zametki, 37:2 (1985), 152–162 | MR | Zbl
[6] Sakhaev I. I., “O gruppe $K_0(AP^0)$ dlya polulokalnykh kolets”, Math. Nachrichten, 130 (1987), 157–175 | DOI | MR | Zbl
[7] Sakhaev I. I., “O $SBI$-koltsakh i gipoteze Lazara”, Math. Nachrichten, 144 (1989), 87–98 | DOI | MR | Zbl
[8] Sakhaev I. I., “O podnyatii konechnoi porozhdennosti proektivnogo modulya po modulyu ego radikala”, Matem. zametki, 49 (1991), 97–108 | MR | Zbl
[9] Sakhaev I. I., “The finite generation of projective modules”, Algebra. Proc. Int. Conf. (Krasnoyarsk, 1993), de Gruyter, Berlin, 1996, 209–216 | MR | Zbl
[10] Gerasimov V. N., Sakhaev I. I., “Kontrprimer k dvum gipotezam o proektivnykh modulyakh”, Sib. matem. zhurn., 25:6 (1984), 855–859 | MR | Zbl
[11] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1977, 688 pp.
[12] Sarath B., Varadarajan K., “Dual Goldie dimension, II”, Comm. Algebra, 7 (1979), 1885–1899 | DOI | MR | Zbl
[13] Grezeszcuk P., Puczyłowski E. R., “On Goldie and dual Goldie dimension”, J. Pure and Appl. Algebra, 31 (1984), 47–54 | DOI | MR
[14] Hanna A., Shamsuddin A., “Dual Goldie dimension”, Rendiconti dell' Istitutio di Mathematica dell' Universita di Trieste, 24:1–2 (1992), 25–38 | MR | Zbl
[15] Lomp C., On dual Goldie dimension, Diplomarbeit, Heinrich Heine Universität, Düsseldorf, 1996
[16] Takeuchi T., “On cofinite-dimensional modules”, Hokkaido Math. J., 5 (1976), 1–43 | MR
[17] Takeuchi T., “Coranks of a quasi-projective module and its endomorphism ring”, Glasgow Math. J., 36 (1994), 381–383 | DOI | MR | Zbl
[18] Varadarajan K., “Dual Goldie dimension”, Comm. Algebra, 7 (1979), 565–610 | DOI | MR | Zbl
[19] Herbera D., Shamsuddin A., “Modules with semi-local endomorphism ring”, Proc. Amer. Math. Soc., 123 (1995), 3593–3600 | DOI | MR | Zbl
[20] Kash F., Moduli i koltsa, Mir, M., 1981, 368 pp. | MR
[21] Ware R., “Endomorphism rings of projective modules”, Trans. Amer. Math. Soc., 155 (1971), 233–256 | DOI | MR | Zbl
[22] Cartan H., Eilenberg S., Homological algebra, Princeton Univ. Press, Princeton–New York, 1956 | MR | Zbl
[23] Cohn P. M., Free rings and their relations, 2-nd edition, Academic Press, London, 1985, 588 pp. | MR | Zbl
[24] Cohn P. M., “Inversive localization in Noetherian rings”, Comm. Pure Appl. Math., 26 (1973), 679–691 | DOI | MR
[25] Facchini A., Herbera D., “$K_0$ of a semilocal ring”, J. Algebra, 225 (2000), 47–69 | DOI | MR | Zbl
[26] Sakhaev I. I., “Konechnaya porozhdennost proektivnykh modulei nad nekotorymi koltsami”, Izv. vuzov. Matematika, 1996, no. 10, 63–75 | MR | Zbl
[27] Anderson F. W., Fuller K. R., Rings and categories of modules, 2-nd edition, Springer-Verlag, New York, 1992 | MR