Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_8_a0, author = {O. G. Avsyankin}, title = {On an application of the projection method to paired integral operators with homogeneous kernels}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--7}, publisher = {mathdoc}, number = {8}, year = {2002}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a0/} }
TY - JOUR AU - O. G. Avsyankin TI - On an application of the projection method to paired integral operators with homogeneous kernels JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 3 EP - 7 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a0/ LA - ru ID - IVM_2002_8_a0 ER -
O. G. Avsyankin. On an application of the projection method to paired integral operators with homogeneous kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2002), pp. 3-7. https://geodesic-test.mathdoc.fr/item/IVM_2002_8_a0/
[1] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR
[2] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin–Heidelberg–New York, 1990, 512 pp. | MR
[3] Prößdorf S., Silbermann B., Numerical analysis for integral and related operator equations, Birkhäuser Verlag, Basel–Boston–Berlin, 1991, 476 pp. | MR | Zbl
[4] Avsyankin O. G., Mnogomernye integralnye operatory s odnorodnymi yadrami, Dis. ...kand. fiz.-matem. nauk, Rostov-na-Donu, 1997, 145 pp.
[5] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni $(-n)$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl
[6] Karapetyants N. K., Samko S. G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1998, 192 pp. | MR
[7] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1984, 208 pp. | MR | Zbl