Idempotent semigroups with the transitive commutativity relation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 64-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a9,
     author = {V. N. Salii},
     title = {Idempotent semigroups with the transitive commutativity relation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--70},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2002_1_a9/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Idempotent semigroups with the transitive commutativity relation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 64
EP  - 70
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2002_1_a9/
LA  - ru
ID  - IVM_2002_1_a9
ER  - 
%0 Journal Article
%A V. N. Salii
%T Idempotent semigroups with the transitive commutativity relation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 64-70
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2002_1_a9/
%G ru
%F IVM_2002_1_a9
V. N. Salii. Idempotent semigroups with the transitive commutativity relation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 64-70. https://geodesic-test.mathdoc.fr/item/IVM_2002_1_a9/

[1] Salii V. N., “On quasi-boolean powers of rectangular bands”, Polugruppy i ikh prilozheniya, vklyuchaya polugruppovye koltsa, Mezhdunarodn. konf., Tez. dokl., Sankt-Peterburg, 1995, 58

[2] L. A. Skornyakov (red.), Obschaya algebra, T. 2, Nauka, M., 1991, 480 pp. | Zbl

[3] Lyapin E. S., Polugruppy, Fizmatgiz, M., 1960, 592 pp. | MR | Zbl

[4] Salii V. N., “Kvazibulevy stepeni singulyarnykh polugrupp”, Izv. vuzov. Matematika, 1994, no. 11, 67–74 | MR

[5] Salii V. N., “Kvazibulevy stepeni elementarnykh abelevykh $p$-grupp”, Matem. zametki, 66:2 (1999), 264–274 | MR

[6] Salii V. N., “Lattice extensions of algebras and Malcev products”, Tatra Mountains Math. Publ., 5 (1995), 97–100 | MR | Zbl