On the behavior of a~conformal radius in subclasses of univalent domains
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_8_a2,
     author = {L. A. Aksent'ev and V. P. Mikka},
     title = {On the behavior of a~conformal radius in subclasses of univalent domains},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--28},
     publisher = {mathdoc},
     number = {8},
     year = {2001},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2001_8_a2/}
}
TY  - JOUR
AU  - L. A. Aksent'ev
AU  - V. P. Mikka
TI  - On the behavior of a~conformal radius in subclasses of univalent domains
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 20
EP  - 28
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2001_8_a2/
LA  - ru
ID  - IVM_2001_8_a2
ER  - 
%0 Journal Article
%A L. A. Aksent'ev
%A V. P. Mikka
%T On the behavior of a~conformal radius in subclasses of univalent domains
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 20-28
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2001_8_a2/
%G ru
%F IVM_2001_8_a2
L. A. Aksent'ev; V. P. Mikka. On the behavior of a~conformal radius in subclasses of univalent domains. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 20-28. https://geodesic-test.mathdoc.fr/item/IVM_2001_8_a2/

[1] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR

[2] Krzyž J. G., “Some remarks on the maxima of inner conformal radius”, Ann. UMCS. A, 46 (1992), 57–61 | MR | Zbl

[3] Kühnau R., “Maxima beim konformen Radius einfach zusammenhängender Gebiete”, Ann. UMCS. A, 46 (1992), 63–73 | MR | Zbl

[4] Aksentev L. A., Kazantsev A. V., Popov N. I., “O teoremakh edinstvennosti dlya vneshnei obratnoi kraevoi zadachi v podklassakh odnolistnykh funktsii”, Izv. vuzov. Matematika, 1998, no. 8, 3–13 | MR

[5] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Izv. vuzov. Matematika, 1989, no. 8, 69–72 | MR

[6] Nehari Z., “The Schwarzian derivative and schlicht functions”, Bull. Amer Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[7] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Tr. semin. po kraev. zadacham, 24, Izd-vo Kazansk. un-ta, Kazan, 1990, 39–62 | MR

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR

[9] Okuyama Yûsuke, “The norm estimates of pre-Schwarzian derivatives of spiral-like functions”, International conference on complex analysis and related topics, the VIII-th romanian-finnish seminar (Jassy, Romania, August 23–27, 1999), 1999, 52–53 | MR

[10] Gakhov F. D., Kraevye zadachi, 3-e izd., Nauka, M., 1977, 640 pp. | MR

[11] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, 2-e izd., Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR