Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_8_a3, author = {V. A. Kakichev and Nguyen Xuan Thao}, title = {A~basic analogue of an $H$-function of one or two variables}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {28--34}, publisher = {mathdoc}, number = {8}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_8_a3/} }
TY - JOUR AU - V. A. Kakichev AU - Nguyen Xuan Thao TI - A~basic analogue of an $H$-function of one or two variables JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 28 EP - 34 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2000_8_a3/ LA - ru ID - IVM_2000_8_a3 ER -
V. A. Kakichev; Nguyen Xuan Thao. A~basic analogue of an $H$-function of one or two variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2000), pp. 28-34. https://geodesic-test.mathdoc.fr/item/IVM_2000_8_a3/
[1] Nguen Suan Tkhao, Bazisnyi analog $H$-funktsii mnogikh peremennykh, Dep. v VINITI 30.12.98, No 3940-B98, Novgor. gos. un-t, Novgorod, 1998, 37 pp.
[2] Thomae J., “Beitrage zur Theorie der durch die Heinesche Reihe: $1+\frac{1-q^a}{1-q}\cdot\frac{1-q^b}{1-q^c}\cdot x+ \frac{1-q^a}{1-q}\cdot\frac{1-q^{a+1}}{1-q^2}\cdot \frac{1-q^b}{1-q^c}\cdot\frac{1-q^{b+1}}{1-q^{c+1}}\cdot x^2+\dotsb$”, J. reine angew. Math., 70 (1869), 258–281
[3] Jackson F. H., “A generalization of the functions $\Gamma(n)$ and $x^n$”, Proc. Roy. Soc. London, 74 (1904), 64–72 | DOI | Zbl
[4] Askey R., “The $q$-gamma and $q$-beta functions”, Appl. Anal., 8:2 (1978), 125–141 | DOI | MR | Zbl
[5] Moak D. S., “The $q$-gamma function for $q>1$”, Aequat. math., 20 (1980), 278–285 | DOI | MR | Zbl
[6] Marichev O. I., Vu Kim Tuan, “O nekotorykh svoistvakh $q$-gamma-funktsii $\Gamma_q(z)$”, DAN BSSR, 26:6 (1982), 488–491 | MR | Zbl
[7] Ismail M. E. H., Lorch L., Muldoon M. E., “Completely monotonic functions associated with the gamma function and its $q$-analogues”, J. Math. Anal. and Appl., 116:1 (1986), 1–9 | DOI | MR | Zbl
[8] Nguen Tkhan Khai, “O kriterii opredeleniya skhodimosti dvoinykh integrallov Mellina–Barnsa”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1992, no. 1, 25–31 | MR
[9] Buschman R. G., “$H$-functions of two variables, 1”, Indian J. Math., 20:2 (1978), 138–153 | MR
[10] Nguen Tkhan Khai, “K teorii obschei $H$-funktsii Foksa dvukh peremennykh”, DAN BSSR, 34:4 (1990), 297–300 | MR
[11] Agarwal R. P., “An extension of Meijer's $G$-function”, Proc. Nat. Inst. Sci. India, A.31:6 (1965), 536–546 | MR | Zbl
[12] Sharma B. L., “On the generalised function of two variables (1)”, Ann. Soc. Sci Bruxelles, 79:1 (1965), 26–40 | MR | Zbl
[13] Marichev O. I., Vu Kim Tuan, “Opredelenie obschei $G$-funktsii dvukh peremennykh, ee chastnye sluchai i differentsialnye uravneniya”, Differents. uravneniya, 19:10 (1983), 1797–1799 | Zbl
[14] Saxena R. K., Modi G. C., Kalla S. L., “A basic analogue of Fox's $H$-function”, Rev. Tec. Ing. Univ. Zulia, 6 (1983), 139–143 | MR | Zbl
[15] Saxena R. K., Kumar R., “Recurrence relations for the basic analogue of $H$-function”, Nat. Acad. Math., 8 (1990), 48–54 | MR | Zbl
[16] Saxena R. K., Kumar R., “Certain finite expansions associated with a basic analogue of $G$-function”, Rev. Tec. Ing. Univ. Zulia, 13 (1990), 111–116 | MR | Zbl
[17] Braaksma B. L. J., “Asymptotic expansions and analytic continuations for a class of Barnes integrals”, Comp. Math., 15 (1964), 239–341 | MR
[18] Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993, 352 pp. | MR | Zbl
[19] Hahn W., “Beitrage zur Theorie der Heineschen Reihen. Die $24$ Integrale der hypergeometrischen $q$-Differenzengleichung. Das $q$-analogen der Laplace Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR | Zbl
[20] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1965, 294 pp.
[21] Watson G. N., “The continuation of functions defined by generalized hypergeometric series”, Trans. Camb. Phil. Soc., 21 (1990), 281–299
[22] Gasper G., “Solution to problem 6497 ($q$-analogues of a gamma function identify, by R. Askey)”, Amer. Math. Monthly, 94 (1986), 199–201 | MR