Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 3-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_7_a0,
     author = {A. V. Vinnik and S. G. Leiko},
     title = {Isoperimetric rotational extremals on two-dimensional connected {Lie} groups with invariant {Riemannian} metrics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--5},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_7_a0/}
}
TY  - JOUR
AU  - A. V. Vinnik
AU  - S. G. Leiko
TI  - Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 3
EP  - 5
IS  - 7
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2000_7_a0/
LA  - ru
ID  - IVM_2000_7_a0
ER  - 
%0 Journal Article
%A A. V. Vinnik
%A S. G. Leiko
%T Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 3-5
%N 7
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2000_7_a0/
%G ru
%F IVM_2000_7_a0
A. V. Vinnik; S. G. Leiko. Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 3-5. https://geodesic-test.mathdoc.fr/item/IVM_2000_7_a0/

[1] Leiko S. G., “Variatsionnye zadachi dlya funktsionalov povorota i spin-otobrazheniya psevdorimanovykh prostranstv”, Izv. vuzov. Matematika, 1990, no. 10, 9–17 | MR

[2] Leiko S. G., “Izoperimetricheskie ekstremali povorota na poverkhnostyakh v evklidovom prostranstve $E^3$”, Izv. vuzov. Matematika, 1996, no. 6, 25–32 | MR | Zbl

[3] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhn. VINITI. Sovremen. probl. matem., 41, 1990, 254 pp. | MR | Zbl

[4] Shapukov B. N., Zadachi po gruppam Li, Ucheb. posobie, Izd-vo. Kazansk. un-ta, 1989, 152 pp. | MR

[5] Bukreev B. Ya., Planimetriya Lobachevskogo v analiticheskom izlozhenii, GITL, M.–L., 1951, 127 pp. | MR