Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_6_a6, author = {S. N. Tronin and O. A. Kopp}, title = {Matrix linear operads}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {53--62}, publisher = {mathdoc}, number = {6}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/} }
S. N. Tronin; O. A. Kopp. Matrix linear operads. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2000), pp. 53-62. https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/
[1] Artamonov V. A., “Klony polilineinykh operatsii i multioperatornye algebry”, UMN, 24:1 (1969), 47–59 | MR | Zbl
[2] May J. P., The geometry of iterated loop spaces, Lect. Notes Math., 271, 1972, 175 pp. | MR | Zbl
[3] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977, 408 pp. | MR
[4] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl
[5] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl
[6] Loday J.-L., Stasheff J. D., Voronov A. A., Operads: proceedings of renaissance conferences, Contemporary Math., 202, 1997, 443 pp. | MR | Zbl
[7] Kapranov M., “Operads and algebraic geometry”, Invited Lectures, Proc. Int. Congr. Math., V. II (Berlin, 1998. August 18–27) | MR
[8] Daletskii Yu. L., “Moduli i rassloeniya nad operadoi”, Algebra i analiz, 10:1 (1998), 20–31 | MR
[9] Tronin S. N., “O mnogoobraziyakh, zadavaemykh polilineinymi tozhdestvami”, Tez. soobsch. XIX Vsesoyuzn. algebr. konf., Ch. 2 (9–11 sent. 1987 g), Lvov, 1987, 280
[10] Tronin S. N., “O nekotorykh svoistvakh finitarnykh algebraicheskikh teorii”, Tez. soobsch. V Sibirskoi shkoly po mnogoobraziyam algebr. sistem (1–5 iyulya 1988 g.), Barnaul, 1988, 68–70
[11] Tronin S. N., O nekotorykh svoistvakh algebraicheskikh teorii mnogoobrazii lineinykh algebr. I: Mnogoobraziya, zadavaemye polilineinymi tozhdestvami, Dep. v VINITI 11.08.88, No 6511-V88, Kazansk. gos. un-t, Kazan, 1988, 31 pp.
[12] Tronin S. N., O retraktsiyakh svobodnykh algebr i modulei, Dis. ...kand. fiz.-matem. nauk, Kishinev, 1989, 105 pp.
[13] Tronin S. N., Kopp O. A., “Matrichnye lineinye operady”, Algebra i analiz, Tez. dokl. shkoly-konf., posvyasch. 100-letiyu so dnya rozhd. B. M. Gagaeva (16–22 iyunya 1997 g., g. Kazan), Kazan, 1997, 216–217
[14] Kopp O. A., “Ekvivalentnost Mority dlya matrichnykh lineinykh operad”, Matematika, mekhanika, programmirovanie, Tez. dokl. stud. nauchn. konf. fak-ov VMK i mekhmata Kazansk. gos. un.-ta, Kazan, 1998, 12–13
[15] Artamonov V. A., Salii V. N., Skornyakov L. A. i dr., Obschaya algebra, T. 2, Nauka, M., 1991, 480 pp.
[16] Sokolov N. P., Vvedenie v teoriyu mnogomernykh matrits, Nauk. dumka, Kiev, 1972, 175 pp. | MR
[17] Gasparyan A. S., O nekotorykh prilozheniyakh mnogomernykh matrits, VTs AN SSSR, M., 1983, 60 pp. | MR
[18] Dzhekobson N., Stroenie kolets, In. lit., M., 1961, 392 pp. | MR
[19] May J. P., “Operads, algebras and modules”, Contemp. Math., 202, 1997, 15–31 | MR | Zbl
[20] May J. P., “Definitions: operads, algebras and modules”, Contemp. Math., 202, 1997, 1–7 | MR | Zbl