Matrix linear operads
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2000), pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_6_a6,
     author = {S. N. Tronin and O. A. Kopp},
     title = {Matrix linear operads},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--62},
     publisher = {mathdoc},
     number = {6},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/}
}
TY  - JOUR
AU  - S. N. Tronin
AU  - O. A. Kopp
TI  - Matrix linear operads
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 53
EP  - 62
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/
LA  - ru
ID  - IVM_2000_6_a6
ER  - 
%0 Journal Article
%A S. N. Tronin
%A O. A. Kopp
%T Matrix linear operads
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 53-62
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/
%G ru
%F IVM_2000_6_a6
S. N. Tronin; O. A. Kopp. Matrix linear operads. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2000), pp. 53-62. https://geodesic-test.mathdoc.fr/item/IVM_2000_6_a6/

[1] Artamonov V. A., “Klony polilineinykh operatsii i multioperatornye algebry”, UMN, 24:1 (1969), 47–59 | MR | Zbl

[2] May J. P., The geometry of iterated loop spaces, Lect. Notes Math., 271, 1972, 175 pp. | MR | Zbl

[3] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977, 408 pp. | MR

[4] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl

[5] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl

[6] Loday J.-L., Stasheff J. D., Voronov A. A., Operads: proceedings of renaissance conferences, Contemporary Math., 202, 1997, 443 pp. | MR | Zbl

[7] Kapranov M., “Operads and algebraic geometry”, Invited Lectures, Proc. Int. Congr. Math., V. II (Berlin, 1998. August 18–27) | MR

[8] Daletskii Yu. L., “Moduli i rassloeniya nad operadoi”, Algebra i analiz, 10:1 (1998), 20–31 | MR

[9] Tronin S. N., “O mnogoobraziyakh, zadavaemykh polilineinymi tozhdestvami”, Tez. soobsch. XIX Vsesoyuzn. algebr. konf., Ch. 2 (9–11 sent. 1987 g), Lvov, 1987, 280

[10] Tronin S. N., “O nekotorykh svoistvakh finitarnykh algebraicheskikh teorii”, Tez. soobsch. V Sibirskoi shkoly po mnogoobraziyam algebr. sistem (1–5 iyulya 1988 g.), Barnaul, 1988, 68–70

[11] Tronin S. N., O nekotorykh svoistvakh algebraicheskikh teorii mnogoobrazii lineinykh algebr. I: Mnogoobraziya, zadavaemye polilineinymi tozhdestvami, Dep. v VINITI 11.08.88, No 6511-V88, Kazansk. gos. un-t, Kazan, 1988, 31 pp.

[12] Tronin S. N., O retraktsiyakh svobodnykh algebr i modulei, Dis. ...kand. fiz.-matem. nauk, Kishinev, 1989, 105 pp.

[13] Tronin S. N., Kopp O. A., “Matrichnye lineinye operady”, Algebra i analiz, Tez. dokl. shkoly-konf., posvyasch. 100-letiyu so dnya rozhd. B. M. Gagaeva (16–22 iyunya 1997 g., g. Kazan), Kazan, 1997, 216–217

[14] Kopp O. A., “Ekvivalentnost Mority dlya matrichnykh lineinykh operad”, Matematika, mekhanika, programmirovanie, Tez. dokl. stud. nauchn. konf. fak-ov VMK i mekhmata Kazansk. gos. un.-ta, Kazan, 1998, 12–13

[15] Artamonov V. A., Salii V. N., Skornyakov L. A. i dr., Obschaya algebra, T. 2, Nauka, M., 1991, 480 pp.

[16] Sokolov N. P., Vvedenie v teoriyu mnogomernykh matrits, Nauk. dumka, Kiev, 1972, 175 pp. | MR

[17] Gasparyan A. S., O nekotorykh prilozheniyakh mnogomernykh matrits, VTs AN SSSR, M., 1983, 60 pp. | MR

[18] Dzhekobson N., Stroenie kolets, In. lit., M., 1961, 392 pp. | MR

[19] May J. P., “Operads, algebras and modules”, Contemp. Math., 202, 1997, 15–31 | MR | Zbl

[20] May J. P., “Definitions: operads, algebras and modules”, Contemp. Math., 202, 1997, 1–7 | MR | Zbl