Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_3_a12, author = {A. V. Molchanov}, title = {Endomorphism semigroups of weak $p$-hypergraphs}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--83}, publisher = {mathdoc}, number = {3}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a12/} }
A. V. Molchanov. Endomorphism semigroups of weak $p$-hypergraphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2000), pp. 80-83. https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a12/
[1] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964, 168 pp. | Zbl
[2] Khartskhorn R., Osnovy proektivnoi geometrii, Mir, M., 1970, 160 pp.
[3] Berge C., Graphs et hypergraphs, Paris, 1970, 279 pp.
[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, Mir, M., 1972, 287 pp. | Zbl
[5] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980, 416 pp. | MR
[6] Lender V. B., “Ob endomorfizmakh proektivnykh geometrii”, XVI Vsesoyuzn. algebraich. konf., Tez. dokl., Ch. 2, L., 1981, 82
[7] Lender V. B., “Ob endomorfizmakh proektivnykh geometrii”, Issledov. po algebr. sistemam, Sverdlovsk, 1984, 48–50 | MR
[8] Molchanov V. A., “Kak proektivnye ploskosti opredelyayutsya svoimi polugruppami”, Teoriya polugrupp i ee prilozh., Izd-vo Saratovsk. gos. un-ta, Saratov, 1984, 42–50 | MR
[9] Sverdlovskaya tetrad, Sb. nereshennykh zadach po teorii polugrupp, Izd-vo Uralsk. gos. un–ta, Sverdlovsk, 1979, 41 pp.
[10] Maltsev A. I., “Nekotorye voprosy teorii klassov modelei”, Tr. IV Vsesoyuzn. matem. s'ezda, T. 1, 1963, 169–198
[11] Ershov Yu. L., Lavrov I. A., Taimanov A. D., Taitslin M. A., “Elementarnye teorii”, UMN, 20:4 (1965), 37–108 | MR | Zbl