On the weak law of large numbers in Banach spaces of martingale type~p under a~general condition of Ces\`aro type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2000), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_3_a0,
     author = {O. V. Antonova and S. A. Bronnikova and V. V. Davydova and M. O. Kabrera},
     title = {On the weak law of large numbers in {Banach} spaces of martingale type~$p$ under a~general condition of {Ces\`aro} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {3},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a0/}
}
TY  - JOUR
AU  - O. V. Antonova
AU  - S. A. Bronnikova
AU  - V. V. Davydova
AU  - M. O. Kabrera
TI  - On the weak law of large numbers in Banach spaces of martingale type~$p$ under a~general condition of Ces\`aro type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 3
EP  - 7
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a0/
LA  - ru
ID  - IVM_2000_3_a0
ER  - 
%0 Journal Article
%A O. V. Antonova
%A S. A. Bronnikova
%A V. V. Davydova
%A M. O. Kabrera
%T On the weak law of large numbers in Banach spaces of martingale type~$p$ under a~general condition of Ces\`aro type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 3-7
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a0/
%G ru
%F IVM_2000_3_a0
O. V. Antonova; S. A. Bronnikova; V. V. Davydova; M. O. Kabrera. On the weak law of large numbers in Banach spaces of martingale type~$p$ under a~general condition of Ces\`aro type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2000), pp. 3-7. https://geodesic-test.mathdoc.fr/item/IVM_2000_3_a0/

[1] Pisier G., “Probabilistic methods in the geometry of Banach spaces”, Lect. Notes Math., 1206, 1986, 167–241 | MR | Zbl

[2] Gut A., “The weak law of large numbers for arrays”, Statist. Probab. Lett., 14 (1992), 49–52 | DOI | MR | Zbl

[3] Hong D. H., “On the weak law of large numbers for randomlyindexed partial sums for arrays”, Statist. Probab. Lett., 28 (1996), 127–130 | DOI | MR | Zbl

[4] Hong D. H., Oh K. S., “On the weak law of large numbers for arrays”, Statist. Probab. Lett., 22 (1995), 55–57 | DOI | MR | Zbl

[5] Hong D. H., Sung S. H., Volodin A. I., On the weak law for randomly indexed partial sums for arrays, Preprint of Pai Chai University, 1998, 7 pp. ; Submitted to Statist. Probab. Lett. | MR

[6] Kovalski P., Rychlik Z., “On the weak law of large numbers for randomly idexed partial sums for arrays”, Ann. Univ. Mariae Curie-Sklodovska. Sect. A, LI:1 (1997), 109–119 | MR

[7] Sung S. H., “Weak law of large numbers for arrays”, Statist. Probab. Lett., 38 (1998), 101–105 | DOI | MR

[8] Adler A., Rosalsky A., Volodin A. I., “A meanconvergence theorem and weak law for arrays of random elements inmartingale type $p$ Banach spaces”, Statist. Probab. Lett., 32 (1977), 167–174 | DOI

[9] Hong D. H., Ordóñez Cabrera M., Sung S. H., Volodin A. I., “Again on the weak law for randomly indexed partial sums for arrays of random elements in martingale type $p$ Banach spaces”, Extracto Math., 14:1 (1999), 45–50 | MR | Zbl

[10] Hong D. H., Ordóñez Cabrera M., Sung S. H., Volodin A. I., “On the weak law for randomly indexed partial sums for arrays of random elements in martingale type $p$ Banach spaces”, Statist. Probab. Lett., 1999, 177–185 | MR

[11] Chow Y. S., Teicher H., Probability theory: independence, interchangeability, martingales, Springer-Verlag, N. Y., 1997 | MR

[12] Loev M., Teoriya veroyatnostei, In. lit., M., 1962, 720 pp. | MR