Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_1_a3, author = {N. A. Degtyarenko}, title = {A~solution in closed form of a~convolution-type integral equation in the hyperelliptic case}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {20--30}, publisher = {mathdoc}, number = {1}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_1_a3/} }
TY - JOUR AU - N. A. Degtyarenko TI - A~solution in closed form of a~convolution-type integral equation in the hyperelliptic case JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 20 EP - 30 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2000_1_a3/ LA - ru ID - IVM_2000_1_a3 ER -
N. A. Degtyarenko. A~solution in closed form of a~convolution-type integral equation in the hyperelliptic case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2000), pp. 20-30. https://geodesic-test.mathdoc.fr/item/IVM_2000_1_a3/
[1] Komyak I. I., “Ob integralnykh uravneniyakh tipa svertki s sopryazheniem”, Vestsi AN BSSR. Ser. fiz.-matem. nauk, 1967, no. 2, 33–47 | Zbl
[2] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl
[3] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1991, 447 pp. | MR
[4] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, XXVI:1 (1971), 113–179
[5] Zverovich E. I., “Smeshannaya zadacha teorii uprugosti dlya ploskosti s razrezami, lezhaschimi na veschestvennoi osi”, Tr. simpoziuma po mekhan. sploshn. sredy i rodstvennym probl. analiza, T. 1, Tbilisi, 1971, 103–114
[6] Korzan L. A., “Odnorodnaya smeshannaya zadacha teorii uprugosti dlya polosy s razrezami, lezhaschimi na veschestvennoi osi”, Vestsi ANB. Ser. fiz.-matem. nauk, 1996, no. 4, 44–49 | MR | Zbl
[7] Zverovich E. I., “O konstruktivnom reshenii kraevoi zadachi Rimana na giperellipticheskikh rimanovykh poverkhnostyakh”, DAN SSSR, 199:4 (1971), 758–761 | Zbl
[8] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, In. lit., M., 1960, 343 pp. | MR | Zbl