Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_12_a8, author = {I. P. Ryazantseva}, title = {A~second-order iterative regularization method for convex constrained minimization problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--77}, publisher = {mathdoc}, number = {12}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/} }
TY - JOUR AU - I. P. Ryazantseva TI - A~second-order iterative regularization method for convex constrained minimization problems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 67 EP - 77 IS - 12 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/ LA - ru ID - IVM_2000_12_a8 ER -
I. P. Ryazantseva. A~second-order iterative regularization method for convex constrained minimization problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 67-77. https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/
[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl
[2] Vasilev F. P., Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 15, 1994, no. 2, 3–10 | MR | Zbl
[3] Ryazantseva I. P., “Nepreryvnyi metod resheniya zadach uslovnoi minimizatsii”, Zhurn. vychisl. matem. i matem. fiz., 39:5 (1999), 734–742 | MR | Zbl
[4] Amochkina T. V., Nedich A., “Ob odnom variante nepreryvnogo metoda proektsii gradienta vtorogo poryadka i ego diskretnom analoge”, Vestn. Mosk. un-ta. Ser. 15, 1995, no. 2, 5–11 | MR | Zbl
[5] Vasilev F. P., Amochkina T. V., Nedich A., “Ob odnom regulyarizovannom variante dvukhshagovogo metoda proektsii gradienta”, Vestn. Mosk. un-ta. Ser. 15, 1996, no. 1, 35–42 | MR
[6] Nedich A., “Trekhshagovyi metod proektsii gradienta dlya zadach minimizatsii”, Izv. vuzov. Matematika, 1993, no. 10, 32–37 | MR | Zbl
[7] Vasilev F. P., Nedich A., Yachimovich M., “Trekhshagovyi regulyarizovannyi metod linearizatsii dlya resheniya zadach minimizatsii”, Izv. vuzov. Matematika, 1994, no. 12, 25–32 | MR
[8] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchnyi sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43 | MR
[9] Apartsin A. S., “K postroeniyu skhodyaschikhsya iteratsionnykh protsessov v gilbertovom prostranstve”, Tr. po prikl. matem. i kibernetike, Irkutsk, 1972, 7–14
[10] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Uralskaya izdatelskaya firma “Nauka”, Ekaterinburg, 1993, 262 pp. | MR
[11] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Ucheb. posobie, Nauka, M., 1981, 400 pp. | MR
[12] Kravchuk A. S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, Izd-vo MGAPI, M., 1997, 340 pp.
[13] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956, 344 pp.
[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR
[15] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR
[16] Lyashko A. D., Karchevskii M. M., “Raznostnye metody resheniya nelineinykh zadach filtratsii”, Izv. vuzov. Matematika, 1983, no. 7, 28–45 | MR | Zbl
[17] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR
[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR