A~second-order iterative regularization method for convex constrained minimization problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 67-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_12_a8,
     author = {I. P. Ryazantseva},
     title = {A~second-order iterative regularization method for convex constrained minimization problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--77},
     publisher = {mathdoc},
     number = {12},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - A~second-order iterative regularization method for convex constrained minimization problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 67
EP  - 77
IS  - 12
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/
LA  - ru
ID  - IVM_2000_12_a8
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T A~second-order iterative regularization method for convex constrained minimization problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 67-77
%N 12
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/
%G ru
%F IVM_2000_12_a8
I. P. Ryazantseva. A~second-order iterative regularization method for convex constrained minimization problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 67-77. https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a8/

[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl

[2] Vasilev F. P., Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 15, 1994, no. 2, 3–10 | MR | Zbl

[3] Ryazantseva I. P., “Nepreryvnyi metod resheniya zadach uslovnoi minimizatsii”, Zhurn. vychisl. matem. i matem. fiz., 39:5 (1999), 734–742 | MR | Zbl

[4] Amochkina T. V., Nedich A., “Ob odnom variante nepreryvnogo metoda proektsii gradienta vtorogo poryadka i ego diskretnom analoge”, Vestn. Mosk. un-ta. Ser. 15, 1995, no. 2, 5–11 | MR | Zbl

[5] Vasilev F. P., Amochkina T. V., Nedich A., “Ob odnom regulyarizovannom variante dvukhshagovogo metoda proektsii gradienta”, Vestn. Mosk. un-ta. Ser. 15, 1996, no. 1, 35–42 | MR

[6] Nedich A., “Trekhshagovyi metod proektsii gradienta dlya zadach minimizatsii”, Izv. vuzov. Matematika, 1993, no. 10, 32–37 | MR | Zbl

[7] Vasilev F. P., Nedich A., Yachimovich M., “Trekhshagovyi regulyarizovannyi metod linearizatsii dlya resheniya zadach minimizatsii”, Izv. vuzov. Matematika, 1994, no. 12, 25–32 | MR

[8] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchnyi sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43 | MR

[9] Apartsin A. S., “K postroeniyu skhodyaschikhsya iteratsionnykh protsessov v gilbertovom prostranstve”, Tr. po prikl. matem. i kibernetike, Irkutsk, 1972, 7–14

[10] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Uralskaya izdatelskaya firma “Nauka”, Ekaterinburg, 1993, 262 pp. | MR

[11] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Ucheb. posobie, Nauka, M., 1981, 400 pp. | MR

[12] Kravchuk A. S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, Izd-vo MGAPI, M., 1997, 340 pp.

[13] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956, 344 pp.

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[15] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[16] Lyashko A. D., Karchevskii M. M., “Raznostnye metody resheniya nelineinykh zadach filtratsii”, Izv. vuzov. Matematika, 1983, no. 7, 28–45 | MR | Zbl

[17] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR