Approximate methods for direct-dual variational inequalities of mixed type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_12_a7,
     author = {I. V. Konnov},
     title = {Approximate methods for direct-dual variational inequalities of mixed type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--66},
     publisher = {mathdoc},
     number = {12},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a7/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Approximate methods for direct-dual variational inequalities of mixed type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 55
EP  - 66
IS  - 12
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a7/
LA  - ru
ID  - IVM_2000_12_a7
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Approximate methods for direct-dual variational inequalities of mixed type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 55-66
%N 12
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a7/
%G ru
%F IVM_2000_12_a7
I. V. Konnov. Approximate methods for direct-dual variational inequalities of mixed type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 55-66. https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a7/

[1] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[2] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[3] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971, 383 pp. | MR

[4] Antipin A. S., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl

[5] Harker P. T., Pang J.-S., “Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 164–220 | MR

[6] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[7] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer, Dordrecht, 1999, 334 pp. | MR | Zbl

[8] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, In. lit., M., 1962, 335 pp.

[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[10] Ter-Krikorov A. M., Optimalnoe upravlenie i matematicheskaya ekonomika, Nauka, M., 1977, 216 pp. | MR | Zbl

[11] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimiz., 14:5 (1976), 877–893 | DOI | MR

[12] Patriksson M., “Merit functions and descent algorithms for a class of variational inequality problems”, J. Optim. Theory and Appl., 41:1 (1997), 37–55 | MR | Zbl

[13] Konnov I. V., “Ob odnom klasse $D$-intervalnykh funktsii dlya smeshannykh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 1999, no. 12, 60–64 | MR | Zbl

[14] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | MR | Zbl

[15] Gabay D., “Applications of the method of multipliers to variational inequalities”, Augmented Lagrangian methods: application to the solution of boundary-value problems, North-Holland, Amsterdam, 1983, 299–331

[16] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, DAS, Kazan, 1998, 101 pp. | MR

[17] Konnov I. V., “Kombinirovannyi metod dlya resheniya variatsionnykh neravenstv s monotonnymi operatorami”, Zhurn. vychisl. matem. i matem. fiz., 39:7 (1999), 1091–1097 | MR | Zbl