Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_12_a0, author = {E. V. Aksenyushkina}, title = {An iterative method for solving linear optimal control problems with terminal constraints}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--8}, publisher = {mathdoc}, number = {12}, year = {2000}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a0/} }
TY - JOUR AU - E. V. Aksenyushkina TI - An iterative method for solving linear optimal control problems with terminal constraints JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 3 EP - 8 IS - 12 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a0/ LA - ru ID - IVM_2000_12_a0 ER -
E. V. Aksenyushkina. An iterative method for solving linear optimal control problems with terminal constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 3-8. https://geodesic-test.mathdoc.fr/item/IVM_2000_12_a0/
[1] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 408 pp. | MR | Zbl
[2] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii. Ch. 2. Zadachi upravleniya, Izd-vo “Universitetskoe”, Minsk, 1984, 207 pp. | MR
[3] Senyavin M. M., Ulanov G. M., “Reshenie zadachi nakopleniya otklonenii s terminalnymi fazovymi ogranicheniyami”, Avtomatika i telemekhanika, 1984, no. 7, 36–44 | MR | Zbl
[4] Srochko V. A., Variatsionnyi printsip maksimuma i metody linearizatsii v zadachakh optimalnogo upravleniya, Izd-vo Irkut. un-ta, Irkutsk, 1989, 160 pp. | MR
[5] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR | Zbl