On the symmetrization of anisotropic integral functionals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1999), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_8_a3,
     author = {V. S. Klimov},
     title = {On the symmetrization of anisotropic integral functionals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--32},
     publisher = {mathdoc},
     number = {8},
     year = {1999},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On the symmetrization of anisotropic integral functionals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 26
EP  - 32
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/
LA  - ru
ID  - IVM_1999_8_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On the symmetrization of anisotropic integral functionals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 26-32
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/
%G ru
%F IVM_1999_8_a3
V. S. Klimov. On the symmetrization of anisotropic integral functionals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1999), pp. 26-32. https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/

[11] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp. | MR

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[13] Klimov V. S., “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 645–671 | MR | Zbl

[14] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, In. lit., M., 1966, 416 pp.

[15] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[16] Kolyada V. I., “Perestanovki funktsii i teoremy vlozheniya”, UMN, 44:5 (1989), 61–95 | MR | Zbl

[17] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[19] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR | Zbl

[20] Dubinin V. N., “Capacities and geometric transformations of subsets in $n$-space”, Geom. and Func. Anal., 3:4 (1993), 342–369 | DOI | MR | Zbl

[21] Kawohl B., Rearrangements and convexity of level sets in P.D.E., Lect. Notes Math., 1150, 1985, 134 pp. | MR | Zbl

[22] Baernstein A., “A unified approach to symmetrization”, Partial differential equations of elliptic type, Symp. Math., XXXV, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR