Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_8_a3, author = {V. S. Klimov}, title = {On the symmetrization of anisotropic integral functionals}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--32}, publisher = {mathdoc}, number = {8}, year = {1999}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/} }
V. S. Klimov. On the symmetrization of anisotropic integral functionals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1999), pp. 26-32. https://geodesic-test.mathdoc.fr/item/IVM_1999_8_a3/
[11] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp. | MR
[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[13] Klimov V. S., “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 645–671 | MR | Zbl
[14] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, In. lit., M., 1966, 416 pp.
[15] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR
[16] Kolyada V. I., “Perestanovki funktsii i teoremy vlozheniya”, UMN, 44:5 (1989), 61–95 | MR | Zbl
[17] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR
[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR
[19] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR | Zbl
[20] Dubinin V. N., “Capacities and geometric transformations of subsets in $n$-space”, Geom. and Func. Anal., 3:4 (1993), 342–369 | DOI | MR | Zbl
[21] Kawohl B., Rearrangements and convexity of level sets in P.D.E., Lect. Notes Math., 1150, 1985, 134 pp. | MR | Zbl
[22] Baernstein A., “A unified approach to symmetrization”, Partial differential equations of elliptic type, Symp. Math., XXXV, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR