Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_8_a0, author = {L. A. Aksent'ev and A. V. Kazantsev and N. I. Popov}, title = {Uniqueness theorems for an exterior inverse boundary value problem in subclasses of univalent functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--13}, publisher = {mathdoc}, number = {8}, year = {1998}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/IVM_1998_8_a0/} }
TY - JOUR AU - L. A. Aksent'ev AU - A. V. Kazantsev AU - N. I. Popov TI - Uniqueness theorems for an exterior inverse boundary value problem in subclasses of univalent functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 3 EP - 13 IS - 8 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IVM_1998_8_a0/ LA - ru ID - IVM_1998_8_a0 ER -
%0 Journal Article %A L. A. Aksent'ev %A A. V. Kazantsev %A N. I. Popov %T Uniqueness theorems for an exterior inverse boundary value problem in subclasses of univalent functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 3-13 %N 8 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IVM_1998_8_a0/ %G ru %F IVM_1998_8_a0
L. A. Aksent'ev; A. V. Kazantsev; N. I. Popov. Uniqueness theorems for an exterior inverse boundary value problem in subclasses of univalent functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 3-13. https://geodesic-test.mathdoc.fr/item/IVM_1998_8_a0/
[1] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR
[2] Gakhov F. D., Kraevye zadachi, 3-e izd., Nauka, M., 1977, 640 pp. | MR
[3] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, 2-e izd., Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR
[4] Aksentev L. A., Khokhlov Yu. E., Shirokova E. A., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Matem. zametki, 24:3 (1978), 319–330 | MR
[5] Aksentev L. A., Ilinskii N. B., Nuzhin M. T., Salimov R. B., Tumashev G. G., “Teoriya obratnykh kraevykh zadach dlya analiticheskikh funktsii i ee prilozheniya”, Itogi nauki i tekhn. VINITI. Matem. analiz, 18, 1980, 67–124 | MR
[6] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Tr. semin. po kraev. zadacham, 24, Kazan, 1990, 39–62 | MR
[7] Nasyrov S. R., Khokhlov Yu. E., “Edinstvennost resheniya vneshnei obratnoi kraevoi zadachi v klasse spiraleobraznykh funktsii”, Izv. vuzov. Matematika, 1984, no. 8, 24–27 | MR | Zbl
[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR
[9] Krzyż J. G., “Some remarks on the maxima of inner conformal radius”, Ann. UMCS.A, 46 (1992), 57–61 | MR | Zbl
[10] Kühnau R., “Maxima beim konformen radius einfach zusammenhängender Gebiete”, Ann. UMCS.A, 46 (1992), 63–73 | MR | Zbl