π-homogeneous spherically symmetric generalized functions on Kn
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1979), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1979_1_a10,
     author = {V. G. Chernov},
     title = {$\pi$-homogeneous spherically symmetric generalized functions on $K^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--75},
     publisher = {mathdoc},
     number = {1},
     year = {1979},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_1979_1_a10/}
}
TY  - JOUR
AU  - V. G. Chernov
TI  - $\pi$-homogeneous spherically symmetric generalized functions on $K^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1979
SP  - 70
EP  - 75
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_1979_1_a10/
LA  - ru
ID  - IVM_1979_1_a10
ER  - 
%0 Journal Article
%A V. G. Chernov
%T $\pi$-homogeneous spherically symmetric generalized functions on $K^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1979
%P 70-75
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_1979_1_a10/
%G ru
%F IVM_1979_1_a10
V. G. Chernov. $\pi$-homogeneous spherically symmetric generalized functions on $K^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1979), pp. 70-75. https://geodesic-test.mathdoc.fr/item/IVM_1979_1_a10/