Predicting the results of the R. Cattell test based on the social network user profiles
Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2024), pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Digital footprints of users in the social network and the results of passing the 16-factor R. Cattell test. The method consists in applying statistical methods and relevant machine learning algorithms to personal data on the user's page. The main results of the experiment are the identification of a significant correlation between the factors evaluated by the R. Cattell test and digital footprints, and the construction of predictive models. The best results among the machine learning methods for predicting the results of the R. Cattell test were shown by gradient boosting algorithms with the maximum valueof the F1-micro metric of 0.606, which was achieved on the factor “emotional sensitivity” (factor I). The practical significance of the work lies in the development of a tool for automatically predicting the results of the R. Cattell test based on the user's digital footprints. The theoretical significance lies in the development of a method for the automated evaluation of the expression of personality traits of social network users on their digital footprints.
Mots-clés : machine learning, correlation analysis, regression analysis, social media, psychological test, R. Cattell test, social network psychological profile, profiling.
@article{ITVS_2024_1_a5,
     author = {G. E. Ryazantsev and V. D. Oliseenko and M. V. Abramov and T. V. Tulupyeva},
     title = {Predicting the results of the {R.} {Cattell} test based on the social network user profiles},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {56--66},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/ITVS_2024_1_a5/}
}
TY  - JOUR
AU  - G. E. Ryazantsev
AU  - V. D. Oliseenko
AU  - M. V. Abramov
AU  - T. V. Tulupyeva
TI  - Predicting the results of the R. Cattell test based on the social network user profiles
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2024
SP  - 56
EP  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ITVS_2024_1_a5/
LA  - ru
ID  - ITVS_2024_1_a5
ER  - 
%0 Journal Article
%A G. E. Ryazantsev
%A V. D. Oliseenko
%A M. V. Abramov
%A T. V. Tulupyeva
%T Predicting the results of the R. Cattell test based on the social network user profiles
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2024
%P 56-66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ITVS_2024_1_a5/
%G ru
%F ITVS_2024_1_a5
G. E. Ryazantsev; V. D. Oliseenko; M. V. Abramov; T. V. Tulupyeva. Predicting the results of the R. Cattell test based on the social network user profiles. Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2024), pp. 56-66. https://geodesic-test.mathdoc.fr/item/ITVS_2024_1_a5/