Entropy methad of compression matrices with random elements
Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-stages method of compression matrices with random elements is proposed. Operation of direct and invers projections are the kernal of method. The information cross-entropy is used for optimization these operations. Serial and parallel procedures are proposed.
Mots-clés : cross-entropy, projection operator, matrix derivatives, gradient method.
@article{ITVS_2018_1_a1,
     author = {Yu. S. Popkov},
     title = {Entropy methad of compression matrices with random elements},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {8--15},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/ITVS_2018_1_a1/}
}
TY  - JOUR
AU  - Yu. S. Popkov
TI  - Entropy methad of compression matrices with random elements
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2018
SP  - 8
EP  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ITVS_2018_1_a1/
LA  - ru
ID  - ITVS_2018_1_a1
ER  - 
%0 Journal Article
%A Yu. S. Popkov
%T Entropy methad of compression matrices with random elements
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2018
%P 8-15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ITVS_2018_1_a1/
%G ru
%F ITVS_2018_1_a1
Yu. S. Popkov. Entropy methad of compression matrices with random elements. Informacionnye tehnologii i vyčislitelnye sistemy, no. 1 (2018), pp. 8-15. https://geodesic-test.mathdoc.fr/item/ITVS_2018_1_a1/