Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a9, author = {E. P. Krugova and E. E. Bukzhalev}, title = {On the mathematical models of virology used to study the {COVID-19} pandemic}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {122--139}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a9/} }
TY - JOUR AU - E. P. Krugova AU - E. E. Bukzhalev TI - On the mathematical models of virology used to study the COVID-19 pandemic JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 122 EP - 139 VL - 232 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a9/ LA - ru ID - INTO_2024_232_a9 ER -
%0 Journal Article %A E. P. Krugova %A E. E. Bukzhalev %T On the mathematical models of virology used to study the COVID-19 pandemic %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 122-139 %V 232 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a9/ %G ru %F INTO_2024_232_a9
E. P. Krugova; E. E. Bukzhalev. On the mathematical models of virology used to study the COVID-19 pandemic. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 122-139. https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a9/
[1] Vinitskii S. I., Gusev A. A., Derbov V. L., Krasovitskii P. M., Penkov F. M., Chuluunbaatar G., “Redutsirovannaya model SIR pandemii COVID-19”, Zh. vychisl. mat. mat. fiz., 61:3 (2021), 400–412 | DOI
[2] Guzev M. A., Nikitina E. Yu., “Dinamika «imperskikh khvostov» na primere koronavirusnoi infektsii”, Dalnevost. mat. zh., 22:1 (2022), 38–50 | MR | Zbl
[3] Eremeeva N. I., “Postroenie modifikatsii SEIRD-modeli rasprostraneniya epidemii, uchityvayuschei osobennosti COVID-19”, Vestn. Tver. gos. un-ta. Ser. Prikl. mat., 2020, no. 4, 14–27
[4] Eremeeva N. I., “Chastichnoe modelirovanie vliyaniya karantinnykh mer na dinamiku epidemiologicheskogo protsessa na osnove SEIRD-modeli”, Vestn. Tyumen. gos. un-ta. Ser. Fiz.-mat. modelir. Neft, gaz, energetika., 7:2 (2021), 170–187
[5] Kabanikhin S. I., Krivorotko O. I., “Matematicheskoe modelirovanie epidemii ukhanskogo koronavirusa COVID-2019 i obratnye zadachi”, Zh. vychisl. mat. mat. fiz., 60:11 (2020), 1950–1961 | DOI | Zbl
[6] Krivorotko O. I., Kabanikhin S. I., Zyatkov N. Yu., Prikhodko A. Yu., Prokhoshin N. M., Shishlenin M. A., “Matematicheskoe modelirovanie i prognozirovanie COVID-2019 v Moskve i Novosibirskoi oblasti”, Sib. zh. vychisl. mat., 23:4 (2020), 395–414 | Zbl
[7] Mikheev M. Yu., Kolesnikova S. V., Pushkareva A. V., Mamelina T. Yu., “Matematicheskoe modelirovanie zhiznennogo tsikla COVID-19, obnaruzhennogo na osnove svertochnoi neironnoi seti”, Fundam. prikl. probl. tekhn. tekhnol., 2022, no. 5, 76–83
[8] Nikitina A. A., “Otsenka parametrov modeli SQAIRD s uchetom peremennykh intervalov”, Protsessy upravl. ustoich., 8 (2021), 440–449
[9] Abbasi M. et al., “Fractal signatures of the COVID-19 spread”, Chaos Solit. Fract., 140 (2020), 110119 | DOI | MR | Zbl
[10] Abbasi Z., Zamani I., Mehra A. H. A., Shafieirad M., Ibeas A., “Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19”, Chaos Solit. Fract., 139 (2020), 110054 | DOI | MR
[11] Abdullahi B. I., Nasidi B. A., “Fractional order model for the role of mild cases in the transmission of COVID-19”, Chaos Solit. Fract., 142 (2021), 110374 | DOI | MR
[12] Afshar P., Heidarian S., Naderkhani F., Oikonomou A., Plataniotis K. N., Mohammadi A., “COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images”, Pattern Recogn. Lett., 138 (2020), 638-643 | DOI
[13] Alekseev D. V., Galatenko A. V., Galatenko V. V., Nersisyan S. A., Staroverov V. M., “A mathematical model of within-host COVID-19 dynamics”, Dalnevost. mat. zh., 22:2 (2022), 150–151 | MR | Zbl
[14] Alkahtani B. S. T., Alzaid S. S., “A novel mathematics model of covid-19 with fractional derivative. Stability and numerical analysis”, Chaos Solit. Fract., 138 (2020), 110006 | DOI | MR | Zbl
[15] Aslam M., Farman M., Akgül A., Sun M., “Modeling and simulation of fractional order COVID-19 model with quarantined-isolated people”, Math. Meth. Appl. Sci., 44:8 (2021), 6389–6405 | DOI | MR | Zbl
[16] Atangana A., “Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?”, Chaos Solit. Fract., 136 (2020), 109860 | DOI | MR
[17] Babaei A., Jafari H., Banihashemi S., Ahmadi M., “Mathematical analysis of a stochastic model for spread of coronavirus”, Chaos Solit. Fract., 145 (2021), 110788 | DOI | MR
[18] Basnarkov L., “SEAIR epidemic spreading model of COVID-19”, Chaos Solit. Fract., 142 (2021), 110394 | DOI | MR | Zbl
[19] Batistela C. M., Correa D. P. F., Bueno Á. M, Piqueira J. R. C., “SIRSi compartmental model for COVID-19 pandemic with immunity loss”, Chaos Solit. Fract., 142 (2021), 110388 | DOI | MR
[20] Bhattacharyya S., Dey K., Paul A. R., Biswas R., “A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room”, Chaos Solit. Fract., 139 (2020), 110294 | DOI | MR
[21] Bisiacco M., Pillonetto G., Cobelli C., “Closed-form expressions and nonparametric estimation of COVID-19 infection rate”, Automatica., 140 (2022), 110265 | DOI | MR | Zbl
[22] Boudaoui A., El Hadj M. Y., Hammouch Z., Ullah S., “A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel”, Chaos Solit. Fract., 146 (2021), 110859 | DOI | MR
[23] Bozkurt F., Yousef A., Abdeljawad T., Kalinli A., Mdallal Q. A., “A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community”, Chaos Solit. Fract., 152 (2021), 111403 | DOI | MR | Zbl
[24] Chakraborty S., Mali K., “SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation”, Expert Syst. Appl., 178 (2021), 115069 | DOI
[25] Chang J. T., Kaplan E. H., “Modeling local coronavirus outbreaks”, Eur. J. Oper. Res., 304:1 (2023), 57–68 | DOI | MR | Zbl
[26] Cheng X., Wang Y., Huang G., “Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate”, Chaos Solit. Fract., 153 (2021), 111502 | DOI | MR
[27] Contreras S., Villavicencio H. A., Medina-Ortiz D., Biron-Lattes J. P., Olivera-Nappa Á., “A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations”, Chaos Solit. Fract., 136 (2020), 109925 | DOI
[28] Costa G. S., Cota W., Ferreira S. C., “Data-driven approach in a compartmental epidemic model to assess undocumented infections”, Chaos Solit. Fract., 163 (2022), 112520 | DOI | MR
[29] Damberg S., Frömbling L., “‘Furry tales’: pet ownership’s influence on subjective well-being during Covid-19 times”, Qual. Quant., 56:5 (2022), 3645–3664 | DOI
[30] Debbouche M., Ouannas A., Batiha I. M., Grassi G., “Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives”, Nonlin. Dynam., 109:1 (2022), 33–45 | DOI
[31] Dordević J., Papić I., Šuvak N., “A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2”, Chaos Solit. Fract., 148 (2021), 110991 | DOI | MR | Zbl
[32] Easwaramoorthy D., Gowrisankar A., Manimaran A., Nandhini S., Rondoni L., Banerjee S., “An exploration of fractal-based prognostic model and comparative analysis for second wave of COVID-19 diffusion”, Nonlin. Dynam., 106:2 (2021), 1375–1395 | DOI | MR
[33] Elías L. L. Elías S. L., del Rey A. M., “An analysis of contact tracing protocol in an over-dispersed SEIQR Covid-like disease”, Phys. A., 590 (2022), 126754 | DOI | MR
[34] Erturk V. S., Kumar P., “Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives”, Chaos Solit. Fract., 139 (2020), 110280 | DOI | MR | Zbl
[35] Ge J., Wang W., “Vaccination games in prevention of infectious diseases with application to COVID-19”, Chaos Solit. Fract., 161 (2022), 112294 | DOI | MR
[36] Gonçalves A. D. S., Fernandes L. H. S., Nascimento A. D. C., “Dynamics diagnosis of the COVID-19 deaths using the Pearson diagram”, Chaos Solit. Fract., 164 (2022), 112634 | DOI | MR
[37] Grave M., Viguerie A., Barros G. F., Reali A., Andrade R. F. S., Coutinho A. L. G. A., “Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network”, Comput. Meth. Appl. Mech. Eng., 401 (2022), 115541 | DOI | MR | Zbl
[38] Han C., Li M., Haihambo N., Babuna P., Liu Q., Zhao X., Jaeger C., Li Y., Yang S., “Mechanisms of recurrent outbreak of COVID-19: A model-based study”, Nonlin. Dynam., 106:2 (2021), 1169–1185 | DOI
[39] Hanthanan A. K., Hussaini M. Y., “Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis — Effect on number of deaths”, Chaos Solit. Fract., 152 (2021), 111458 | DOI | MR | Zbl
[40] Higazy M., “Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic”, Chaos Solit. Fract., 138 (2020), 110007 | DOI | MR | Zbl
[41] Iloanusi O., Ross A., “Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19”, Chaos Solit. Fract., 152 (2021), 111340 | DOI
[42] Jadhav S., Deng G., Zawin M., Kaufman A. E., “COVID-view: Diagnosis of COVID-19 using Chest CT”, IEEE Trans. Visual. Comput. Graph., 28:1 (2022), 227–237 | DOI
[43] Jahanshahi H., Muñoz-Pacheco J. M., Bekiros S., Alotaibi N. D., “A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19”, Chaos Solit. Fract., 143 (2021), 110632 | DOI
[44] Jing N., Shi Z., Hu Y., Ji Y., “Cross-sectional analysis and data-driven forecasting of confirmed COVID-19 cases”, Appl. Intell., 52:3 (2022), 3303–3318 | DOI
[45] Kabir K. A., Chowdhury A., Tanimoto J., “An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics”, Chaos Solit. Fract., 146 (2021), 110918 | DOI | MR
[46] Khajji B., Kouidere A., Elhia M., Balatif O., Rachik M., “Fractional optimal control problem for an age-structured model of COVID-19 transmission”, Chaos Solit. Fract., 143 (2021), 110625 | DOI | MR
[47] Khan H., Ahmad F., Tunç O., Idrees M., “On fractal-fractional Covid-19 mathematical model”, Chaos Solit. Fract., 157 (2022), 111937 | DOI | MR | Zbl
[48] Khan H., Ibrahim M., Abdel-Aty A.-H., Khashan M. M., Khan F. Ali, Khan A., “A fractional order Covid-19 epidemic model with Mittag-Leffler kernel”, Chaos Solit. Fract., 148 (2021), 111030 | DOI | MR | Zbl
[49] Khyar O., Allali K., “Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic”, Nonlin. Dynam., 102:1 (2020), 489–509 | DOI | MR | Zbl
[50] Kirbaş İ, Sözen A., Tuncer A. D., Kazancioğlu F. Ş., “Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches”, Chaos Solit. Fract., 138 (2020), 110015 | DOI
[51] Kumar S., Cao J., Abdel-Aty M., “A novel mathematical approach of COVID-19 with non-singular fractional derivative”, Chaos Solit. Fract., 139 (2020), 110048 | DOI | MR | Zbl
[52] Lalwani S., Sahni G., Mewara B., Kumar R., “Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for COVID-19 pandemic”, Chaos Solit. Fract., 138 (2020), 109939 | DOI | MR
[53] Lee C., Li Y., Kim J., “The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19”, Chaos Solit. Fract., 139 (2020), 110090 | DOI | MR
[54] Liu X., Ullah S., Alshehri A., Altanji M., “Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study”, Chaos Solit. Fract., 153 (2021), 111534 | DOI | MR
[55] Lobato F. S., Libotte G. B., Platt G. M., “Mathematical modelling of the second wave of COVID-19 infections using deterministic and stochastic SIDR models”, Nonlin. Dynam., 106:2 (2021), 1359–1373 | DOI | MR
[56] Lu Z., Yu Y., Chen Y. Quan, Ren G., Xu C., Wang S., “Stability analysis of a nonlocal SIHRDP epidemic model with memory effects”, Nonlin. Dynam., 109:1 (2022), 121–141 | DOI | MR
[57] Luo X., Duan H., Xu K., “A novel grey model based on traditional Richards model and its application in COVID-19”, Chaos Solit. Fract., 142 (2021), 110480 | DOI | MR
[58] Meraz M., Carbó R., Rodriguez E., Alvarez-Ramirez J., “Fractal correlations in the Covid-19 genome sequence via multivariate rescaled range analysis”, Chaos Solit. Fract., 168 (2023), 113132 | DOI | MR
[59] Mohammad M., Trounev A., “On the dynamical modeling of COVID-19 involving Atangana–Baleanu fractional derivative and based on Daubechies framelet simulations”, Chaos Solit. Fract., 140 (2020), 110171 | DOI | MR | Zbl
[60] Mohd M. H., Sulayman F., “Unravelling the myths of R0 in controlling the dynamics of COVID-19 outbreak: A modelling perspective”, Chaos Solit. Fract., 138 (2020), 109943 | DOI
[61] Moualkia S., “Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives”, Chaos Solit. Fract., 167 (2023), 113030 | DOI | MR
[62] Nabi K. N., Kumar P. Erturk V. S., “Projections and fractional dynamics of COVID-19 with optimal control strategies”, Chaos Solit. Fract., 145 (2021), 110689 | DOI | MR
[63] Nauman A., Amr E., Ali R., Muhammad R., Waleed A., “Numerical simulation and stability analysis of a novel reaction-diffusion COVID-19 model”, Nonlin. Dynam., 106:2 (2021), 1293–1310 | DOI | MR
[64] Naz R., Al-Raeei M., “Analysis of transmission dynamics of COVID-19 via closed-form solutions of a susceptible-infectious-quarantined-diseased model with a quarantine-adjusted incidence function”, Math. Meth. Appl. Sci., 44:14 (2021), 11196–11210 | DOI | MR | Zbl
[65] Ng Lynnette H. X., Carley K. M., “The coronavirus is a bioweapon: classifying coronavirus stories on fact-checking sites”, Comput. Math. Organ. Th., 27:2 (2021), 179–194 | DOI
[66] Nick J., Menzies M., “Trends in COVID-19 prevalence and mortality: A year in review”, Phys. D., 425 (2021), 132968 | DOI | MR | Zbl
[67] Niu R., Chan Y.-C., Wong E. W. M., van Wyk M. A., Chen G., “A stochastic SEIHR model for COVID-19 data fluctuations”, Nonlin. Dynam., 106:2 (2021), 1311–1323 | DOI
[68] Omame A., Abbas M., Abdel-Aty A.-H., “Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives”, Chaos Solit. Fract., 162 (2022), 112427 | DOI | MR
[69] Omame A., Abbas M., Onyenegecha C. P., “A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative”, Chaos Solit. Fract., 153 (2021), 111486 | DOI | MR
[70] Otunuga O. M., “Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19”, Chaos Solit. Fract., 147 (2021), 110983 | DOI | MR
[71] Özköse F., Yavuz M., Şenel M. T., Habbireeh R., “Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom”, Chaos Solit. Fract., 157 (2022), 111954 | DOI | MR
[72] Păcurar C.-M., Necula B.-R., “An analysis of COVID-19 spread based on fractal interpolation and fractal dimension”, Chaos Solit. Fract., 139 (2020), 110073 | DOI | MR
[73] Parbat D., Chakraborty M., “A python based support vector regression model for prediction of COVID-19 cases in India”, Chaos Solit. Fract., 138 (2020), 109942 | DOI
[74] Pathan R. K., Biswas M., Khandaker M. U., “Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model”, Chaos Solit. Fract., 138 (2020), 110018 | DOI
[75] Pelinovsky E., Kokoulina M., Epifanova A., Kurkin A., Kurkina O., Tang M., Macau E., Kirillin M., “Gompertz model in COVID-19 spreading simulation”, Chaos Solit. Fract., 154 (2022), 111699 | DOI | MR
[76] Piovella N., “Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic”, Chaos Solit. Fract., 140 (2020), 110243 | DOI | MR | Zbl
[77] Rahman M., Ahmad S., Matoog R. T., Alshehri N. A., Khan T., “Study on the mathematical modelling of COVID-19 with Caputo–Fabrizio operator”, Chaos Solit. Fract., 150 (2021), 111121 | DOI | MR
[78] Rahman M., Muhammad A., Kamal S., Gómez-Aguilar J. F., “Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy Caputo, random and ABC fractional order derivative”, Chaos Solit. Fract., 140 (2020), 110232 | DOI | MR | Zbl
[79] Rautenstrauss M., Martin L., Minner S., “Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances”, Eur. J. Oper. Res., 304:1 (2023), 239–254 | DOI | MR | Zbl
[80] Rezapour S., Baghaian A., Naderi N., Sarmiento J. P., “Infection transmission and prevention in metropolises with heterogeneous and dynamic populations”, Eur. J. Oper. Res., 304:1 (2023), 113–138 | DOI | MR | Zbl
[81] Sabbar Y., Kiouach D., Rajasekar S. P., El-Idrissi S. A., “The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case”, Chaos Solit. Fract., 159 (2022), 112110 | DOI | MR | Zbl
[82] Scheiner S., Ukaj N., Hellmich C., “Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule”, Chaos Solit. Fract., 136 (2020), 109891 | DOI
[83] Shah K., Abdeljawad T., Ud Din R., “To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate”, Phys. A., 604 (2022), 127915 | DOI | MR
[84] Singhal A., Singh P., Lall B., Joshi S. D., “Modeling and prediction of COVID-19 pandemic using Gaussian mixture model”, Chaos Solit. Fract., 138 (2020), 110023 | DOI | MR
[85] Sintunavarat W., Turab A., “Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator”, Math. Comput. Simul., 198 (2022), 65—84 | DOI | MR
[86] Taylor J. W., Taylor K. S., “Combining probabilistic forecasts of COVID-19 mortality in the United States”, Eur. J. Oper. Res., 304:1 (2023), 25–41 | DOI | MR | Zbl
[87] Tomovski I., Basnarkov L., Abazi A., “Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks”, Phys. A., 599 (2022), 127480 | DOI | MR
[88] Triambak S., Mahapatra D. P., “A random walk Monte Carlo simulation study of COVID-19-like infection spread”, Phys. A., 574 (2021), 126014 | DOI
[89] Tsiligianni C., Tsiligiannis A., Tsiliyannis C., “A stochastic inventory model of COVID-19 and robust, realtime identification of carriers at large and infection rate via asymptotic laws”, Eur. J. Oper. Res., 304:1 (2023), 42–56 | DOI | Zbl
[90] Tuan Nguyen H., Mohammadi H., Rezapour S., “A mathematical model for COVID-19 transmission by using the Caputo fractional derivative”, Chaos Solit. Fract., 140 (2020), 110107 | DOI | MR | Zbl
[91] Wang J., Yang M., Lu L., Shao W., “Does the ‘Delta Variant’ affect the nonlinear dynamic characteristics of SARS-CoV-2 transmission?”, Chaos Solit. Fract., 162 (2022), 112382 | DOI | MR
[92] Wang L., Min J., Doig R., Elliott Lloyd T., Colijn C., “Estimation of SARS-CoV-2 antibody prevalence through serological uncertainty and daily incidence”, Can. J. Statist., 50:3 (2022), 734–750 | DOI | MR
[93] Wiliński A., Kupracz L., Senejko A., Chrzaştek G., “COVID-19: Average time from infection to death in Poland, USA, India and Germany”, Qual. Quant., 56:6 (2022), 4729–4746 | DOI
[94] Yin M.-Z., Zhu Q.-W., Lü X., “Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model”, Nonlin. Dynam., 106:2 (2021), 1347–1358 | DOI
[95] Yin X., Büyüktahtakin İ. E., Patel B. P., “COVID-19: Data-driven optimal allocation of ventilator supply under uncertainty and risk”, Eur. J. Oper. Res., 304:1 (2023), 255–275 | DOI | MR | Zbl
[96] Yousefpour A., Jahanshahi H., Bekiros S., “Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak”, Chaos Solit. Fract., 136 (2020), 109883 | DOI | MR
[97] Yu X., Lu L., Shen J., Li J., Xiao W., Chen Y., “RLIM: a recursive and latent infection model for the prediction of US COVID-19 infections and turning points”, Nonlin. Dynam., 106:2 (2021), 1397–1410 | DOI
[98] Yu Z., Arif R., Fahmy M. A., Sohail A., “Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model”, Chaos Solit. Fract., 150 (2021), 111202 | DOI | MR
[99] Zhang X., Ma R., Wang L., “Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries”, Chaos Solit. Fract., 138 (2020), 109829 | DOI
[100] Zhang Y., Yu X., Sun H., Tick G. R., Wei W., Jin B., “Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19”, Chaos Solit. Fract., 138 (2020), 109959 | DOI | MR
[101] Zhang Z., Jain S., “Mathematical model of Ebola and Covid-19 with fractional differential operators: Non-Markovian process and class for virus pathogen in the environment”, Chaos Solit. Fract., 140 (2020), 110175 | DOI | MR | Zbl