Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a8, author = {V. S. Rykhlov}, title = {Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {99--121}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a8/} }
TY - JOUR AU - V. S. Rykhlov TI - Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 99 EP - 121 VL - 232 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a8/ LA - ru ID - INTO_2024_232_a8 ER -
%0 Journal Article %A V. S. Rykhlov %T Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 99-121 %V 232 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a8/ %G ru %F INTO_2024_232_a8
V. S. Rykhlov. Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 99-121. https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a8/
[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN., 458:2 (2014), 138–140 | DOI | MR | Zbl
[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 229–241 | DOI | MR | Zbl
[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[4] Kornev V. V., “O primenenii raskhodyaschikhsya ryadov v smeshannykh zadachakh, ne imeyuschikh klassicheskogo resheniya”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach». Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya–XXXIII» (Voronezh, 3-9 maya 2022 g.), VGU, Voronezh, 2022, 132–137
[5] Kornev V. V., Khromov A. P., “O klassicheskom i obobschennom reshenii smeshannoi zadachi dlya volnovogo uravneniya”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach», posv. 90-letiyu akad. V. A. Ilina. Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya–XXIX» (Moskva, 3-5 maya 2018 g.), M., 2018, 132–133
[6] Kornev V. V., Khromov A. P., “Klassicheskoe reshenie smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 172 (2019), 119–133 | DOI
[7] Kornev V. V., Khromov A. P., “Ispolzovanie rezolventnogo podkhoda i raskhodyaschikhsya ryadov pri reshenii smeshannykh zadach”, Matematika. Mekhanika. T. 23, Izd-vo Saratov. un-ta, 2021, 18–24
[8] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.-L., 1950
[9] Kurdyumov V. P., Khromov A. P., Khalova V. A., “Smeshannaya zadacha dlya odnorodnogo volnovogo uravneniya s nenulevoi nachalnoi skorostyu s summiruemym potentsialom”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 20:4 (2020), 444–456 | MR | Zbl
[10] Lomov I. S., “Effektivnoe primenenie metoda Fure dlya postroeniya resheniya smeshannoi zadachi dlya telegrafnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. kibern., 2021, no. 4, 37–42
[11] Lomov I. S., “Obobschennaya formula Dalambera dlya telegrafnogo uravneniya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 199 (2021), 66–79 | DOI
[12] Lomov I. S., “Effektivnoe primenenie metoda Fure k resheniyu smeshannoi zadachi dlya telegrafnogo uravneniya”, Mat. 21 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 31 yanvarya — 4 fevralya 2022 g.), Izd-vo Saratov. un-ta, Saratov, 2022, 178–180
[13] Lomov I. S., “Postroenie obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya: sekventsialnyi i aksiomaticheskii podkhody”, Differ. uravn., 58:11 (2022), 1471–1483 | Zbl
[14] Lomov I. S., Vestn. Mosk.un-ta. Ser. 15. Vychisl. mat. kibern., 2022, no. 3, 33–40
[15] Lomovtsev F. E., “Metod korrektirovki probnykh reshenii volnovogo uravneniya v krivolineinoi pervoi chetverti ploskosti dlya minimalnoi gladkosti pravoi chasti”, Zh. Belorus. gos. un-ta. Mat. Inf., 2017, no. 3, 38–52
[16] Lomovtsev F. E., “Globalnaya teorema korrektnosti po Adamaru pervoi smeshannoi zadachi dlya volnovogo uravneniya v polupolose ploskosti”, Vesn. GrDU imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 11:1 (2021), 68–82
[17] Lomovtsev F. E., “Pervaya smeshannaya zadacha dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na polupryamoi”, Zh. Belorus. gos. un-ta. Mat. Inf., 1 (2021), 18–38
[18] Lomovtsev F. E., “Globalnaya teorema korrektnosti pervoi smeshannoi zadachi dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na otrezke”, Probl. fiz. mat. tekhn., 1:50 (2022), 62–73
[19] Lomovtsev F. E., Lysenko V. N., Vesn. MDU imya Kulyashova A. A. Ser. B. Pryrod. navuki: Mat. Fiz. Biyalogiya., 2:58 (Smeshannaya zadacha dlya obschego odnomernogo volnovogo uravneniya v polupolose ploskosti pri nestatsionarny), 28–55
[20] Moiseev E. I., Lomovtsev F. E., Novikov E. N., “Neodnorodnoe faktorizovannoe giperbolicheskoe uravnenie vtorogo poryadka v chetverti ploskosti pri polunestatsionarnoi faktorizovannoi vtoroi kosoi proizvodnoi v granichnom uslovii”, Dokl. RAN., 459:5 (2014), 544–549 | DOI | Zbl
[21] Muravei L. A., Petrov V. M., Romanenkov A. M., “O zadache gasheniya poperechnykh kolebanii prodolno dvizhuscheisya struny”, Vestn. Mordov. un-ta., 28:4 (2018), 472–485
[22] Muravei L. A., Romanenkov A. M., “Chislennye metody gasheniya kolebanii dvizhuschegosya bumazhnogo polotna”, Sb. mat. Mezhdunar. konf. «Differentsialnye uravneniya, matematicheskoe modelirovanie i vychislitelnye algoritmy» (Belgorod, 25–29 oktyabrya 2021 g.), Belgorod, 2021, 194–196
[23] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[24] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[25] Rykhlov V. S., “Razreshimost smeshannoi zadachi dlya giperbolicheskogo uravneniya pri otsutstvii polnoty sobstvennykh funktsii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 200 (2021), 95–104 | DOI
[26] Rykhlov V. S., “Razreshimost smeshannoi zadachi dlya giperbolicheskogo uravneniya s raspadayuschimisya kraevymi usloviyami pri otsutstvii polnoty sobstvennykh funktsii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 204 (2022), 124–134 | DOI
[27] Rykhlov V. S., “Edinstvennost resheniya nachalno-granichnoi zadachi dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi i formula dlya resheniya”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 23:2 (2023), 183–194 | MR | Zbl
[28] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi dlya uravneniya giperbolicheskogo tipa so smeshannoi proizvodnoi”, Mat. 21 Mezhdunar. Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 31 yanvarya — 4 fevralya 2022 g.), Izd-vo Saratoa. un-ta, Saratov, 2022, 252–255
[29] Rykhlov V. S., “O reshenii nachalno-granichnoi zadachi dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach». Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya–XXXIII» (Voronezh, 3-9 maya 2022 g.), VGU, Voronezh, 2022
[30] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi v polupolose dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Matematika. Mekhanika. T. 24, Izd-vo Saratov. un-ta, Saratov, 2022, 53–58
[31] Rykhlov V. S., “Obobschennoe reshenie nachalno-granichnoi zadachi dlya volnovogo uravneniya so smeshannoi proizvodnoi i nenulevym potentsialom”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach». Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya–XXXIV» (Voronezh, 3-9 maya 2023 g.), VGU, Voronezh, 2023, 343–345
[32] Rykhlov V. S., “O reshenii nachalno-granichnoi zadachi v polupolose dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 226 (2023), 89–107
[33] Rykhlov V. S., “Obobschennaya nachalno-granichnaya zadacha dlya volnovogo uravneniya so smeshannoi proizvodnoi”, Sovr. mat. Fundam. napr., 69:2 (2023), 342–363 | MR
[34] Rykhlov V. S., “Obobschennoe reshenie nachalno-granichnoi zadachi dlya uravneniya giperbolicheskogo tipa so smeshannoi proizvodnoi”, Tez. dokl. XVII Mezhdunar. nauch. konf. «Poryadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniya. Teoriya operatorov i differentsialnye uravneniya» (Vladikavkaz, 14–20 iyulya 2013 g.), YuMI VNTs RAN, Vladikavkaz, 2023, 207–208
[35] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi dlya volnovogo uravneniya so smeshannoi proizvodnoi i potentsalom obschego vida”, Sb. trudov XVI Mezhdunar. Kazanskoi shkoly-konf. «Teoriya funktsii, ee prilozheniya i smezhnye voprosy» (Kazan, 22–27 avgusta 2023 g.), Kazan, 2023, 205–207
[36] Tolstov G. P., “O vtoroi smeshannoi proizvodnoi”, Mat. sb., 24 (66):1 (1949), 27–51
[37] Khardi G., Raskhodyaschiesya ryady., Izd-vo inostrannoi literatury, M., 1951
[38] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya”, Mat. 21 Mezhdunar. Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 31 yanvarya — 4 fevralya 2022 g.), SGU, Saratov, 2022, 319–324
[39] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya prosteishego vida”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 22:3 (2022), 322–331 | MR | Zbl
[40] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 56:2 (2016), 239–251 | DOI | MR | Zbl
[41] Khromov A. P., “Raskhodyaschiesya ryady i smeshannaya zadacha dlya volnovogo uravneniya”, V sb.: Matematika. Mekhanika., 21 (2019), 62–67
[42] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl
[43] Khromov A. P., “Raskhodyaschiesya ryady i funktsionalnye uravneniya, svyazannye s analogami geometricheskoi progressii”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach». Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya–XXX» (Voronezh, 3-9 maya 2019 g.), VGU, Voronezh, 2019, 291–300
[44] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Mat. 20 Mezhdunar. Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 433–439
[45] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha”, Matematika. Mekhanika. T. 23, Izd-vo Saratov. un-ta., Saratov, 2021, 63–67
[46] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | DOI | Zbl
[47] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Tr. In-ta mat. mekh. UrO RAN., 27:4 (2021), 215–238 | MR
[48] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha, ne dopuskayuschaya razdeleniya peremennykh”, Tr. Mat. tsentra im. N. I. Lobachevskogo., 60 (2021), 325–328
[49] Eiler L., Differentsialnoe ischislenie, GITTL, M., L., 1949
[50] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, J. Appl. Mech., 25:1 (1958), 347–348 | DOI | Zbl
[51] Mahalingam S., “Transverse vibrations of power transmission chains”, British J. Appl. Phys., 8:4 (1957), 145–148 | DOI
[52] Sack R. A., “Transverse oscillations in traveling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI