Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a10, author = {O. E. Gorokhov and M. I. Petrovskii and I. V. Mashechkin}, title = {Deep learning method for identifying anomalies in operating computer systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {140--152}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a10/} }
TY - JOUR AU - O. E. Gorokhov AU - M. I. Petrovskii AU - I. V. Mashechkin TI - Deep learning method for identifying anomalies in operating computer systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 140 EP - 152 VL - 232 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a10/ LA - ru ID - INTO_2024_232_a10 ER -
%0 Journal Article %A O. E. Gorokhov %A M. I. Petrovskii %A I. V. Mashechkin %T Deep learning method for identifying anomalies in operating computer systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 140-152 %V 232 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a10/ %G ru %F INTO_2024_232_a10
O. E. Gorokhov; M. I. Petrovskii; I. V. Mashechkin. Deep learning method for identifying anomalies in operating computer systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 140-152. https://geodesic-test.mathdoc.fr/item/INTO_2024_232_a10/
[1] Chandola V., Banerjee A., Kumar V., “Anomaly detection: A survey”, ACM Comp. Surv. (CSUR)., 41:3 (2009), 1–58 | DOI
[2] Chollet F., Deep Learning with Python, Simon and Schuster, 2021 | MR
[3] Girolami M., “Mercer kernel-based clustering in feature space”, IEEE Trans. Neural Networks., 13:3 (2002), 780–784 | DOI
[4] Gorokhov O., Petrovskiy M., Mashechkin I., “Convolutional neural networks for unsupervised anomaly detection in text data”, Int. Conf. on Intelligent Data Engineering and Automated Learning, Springer, Cham, 2017, 500–507
[5] Guo H., Yuan S., Wu X., “Logbert: Log anomaly detection via bert”, Proc. 2021 International Joint Conf. on Neural Networks, IEEE, 2021, 1–8
[6] He S. et al., “Experience report: System log analysis for anomaly detection”, Proc. 2016 IEEE 27th Int. Symp. on Software Reliability Engineering, IEEE, 2016, 207–218
[7] Hotho A., Nurnberger A., Paas G., “A brief survey of text mining”, J. Language Techn. Comput. Linguistics., 20:1 (2005), 19–62 | DOI
[8] Kazachuk M. et al., “Novelty detection using elliptical fuzzy clustering in a reproducing kernel Hilbert space”, Proc. 19th Int. Conf. "Intelligent Data Engineering and Automated Learning (IDEAL-2018). Part 2 (Madrid, Spain, November 21–23, 2018), Springer, 2018, 221–232
[9] Kim Y., Convolutional neural networks for sentence classification, arXiv: 1408.5882 [cs.CL]
[10] Klambauer G. et al., “Self-normalizing neural networks”, Adv. Neural Inform. Process. Syst., 30 (2017), 971–980
[11] Le V. H., Zhang H., “Log-based anomaly detection with deep learning: How far are we?”, Proc. 44th Int. Conf. on Software Engineering, 2022, 1356–1367
[12] Ma J. et al., “Automatic parsing and utilization of system log features in log analysis: A Survey”, Appl. Sci., 13:8 (2023), 4930 | DOI
[13] Manevitz L. M., Yousef M., “One-class SVMs for document classification”, J. Machine Learn. Res., 2 (2001), 139–154
[14] Mi H. et al., “Toward fine-grained, unsupervised, scalable performance diagnosis for production cloud computing systems”, IEEE Trans. Paral. Distr. Syst., 24:6 (2013), 1245–1255 | DOI
[15] Micikevicius P. et al., Mixed precision training, arXiv: 1710.03740 [cs.AI]
[16] Oliner A., Stearley J., “What supercomputers say: A study of five system logs”, Proc. 37th Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks, IEEE, 2007, 575–584
[17] Petrovskiy M. I., “Outlier detection algorithms in data mining systems”, Program. Comput. Software., 29 (2003), 228–237 | DOI | MR
[18] Ryciak P., Wasielewska K., Janicki A., “Anomaly detection in log files using selected natural language processing methods”, Appl. Sci., 12:10 (2022), 5089 | DOI
[19] Vaswani A. et al., “Attention is all you need”, Adv. Neural Inform. Process. Syst., 30 (2017), 5998–6008
[20] Xu W. et al., “Detecting large-scale system problems by mining console logs”, Proc. ACM SIGOPS 22nd Symp. on Operating Systems Principles, 2009, 117–132