Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a9, author = {A. M. Elishev and A. Ya. Belov and F. Razavinia and Yu Jie-Tai and Wenchao Zhang}, title = {Polynomial automorphisms, quantization, and {Jacobian} conjecture related problems. {III.} {Automorphisms,} augmentation topology, and approximation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {95--128}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2022_215_a9/} }
TY - JOUR AU - A. M. Elishev AU - A. Ya. Belov AU - F. Razavinia AU - Yu Jie-Tai AU - Wenchao Zhang TI - Polynomial automorphisms, quantization, and Jacobian conjecture related problems. III. Automorphisms, augmentation topology, and approximation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 95 EP - 128 VL - 215 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2022_215_a9/ LA - ru ID - INTO_2022_215_a9 ER -
%0 Journal Article %A A. M. Elishev %A A. Ya. Belov %A F. Razavinia %A Yu Jie-Tai %A Wenchao Zhang %T Polynomial automorphisms, quantization, and Jacobian conjecture related problems. III. Automorphisms, augmentation topology, and approximation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 95-128 %V 215 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2022_215_a9/ %G ru %F INTO_2022_215_a9
A. M. Elishev; A. Ya. Belov; F. Razavinia; Yu Jie-Tai; Wenchao Zhang. Polynomial automorphisms, quantization, and Jacobian conjecture related problems. III. Automorphisms, augmentation topology, and approximation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 95-128. https://geodesic-test.mathdoc.fr/item/INTO_2022_215_a9/
[1] Abdesselam A., “The Jacobian conjecture as a problem of perturbative quantum field theory”, Ann. H. Poincaré., 4:2 (2003), 199–215 | DOI | MR | Zbl
[2] Abhyankar S., Moh T., “Embedding of the line in the plane”, J. Reine Angew. Math., 276 (1975), 148–166 | MR | Zbl
[3] Amitsur S. A., “Algebras over infinite fields”, Proc. Am. Math. Soc., 7 (1956), 35–48 | DOI | MR | Zbl
[4] Amitsur S. A., “A general theory of radicals, III. Applications”, Am. J. Math., 75 (1954), 126–136 | DOI | MR
[5] Alev J., Le Bruyn L., “Automorphisms of generic 2 by 2 matrices”, Perspectives in Ring Theory, Springer, 1988, 69–83 | DOI | MR
[6] Amitsur A. S., Levitzki J., “Minimal identities for algebras”, Proc. Am. Math. Soc., 1 (1950), 449–463 | DOI | MR | Zbl
[7] Amitsur A. S., Levitzki J., “Remarks on minimal identities for algebras”, Proc. Am. Math. Soc., 2 (1951), 320–327 | DOI | MR | Zbl
[8] Anick D. J., “Limits of tame automorphisms of $k [x_1,\ldots, x_n]$”, J. Algebra., 82:2 (1983), 459–468 | DOI | MR | Zbl
[9] Artamonov V. A., “Projective metabelian groups and {Lie} algebras”, Izv. Math., 12:2 (1978), 213–223 | DOI | MR | Zbl
[10] Artamonov V. A., “Projective modules over universal enveloping algebras”, Math. USSR Izv., 25:3 (1985), 429 | DOI | MR | Zbl
[11] Artamonov V. A., “Nilpotence, projectivity, decomposability”, Sib. Math. J., 32:6 (1991), 901–909 | DOI | MR | Zbl
[12] Artamonov V. A., “The quantum {Serre} problem”, Russ. Math. Surv., 53:4 (1998), 3–77 | DOI | MR
[13] Artamonov V. A., “Automorphisms and derivations of quantum polynomials”, Recent Advances in Lie Theory, eds. Bajo I., Sanmartin E., Heldermann Verlag, 2002, 109–120 | MR | Zbl
[14] Artamonov V. A., “Generalized derivations of quantum plane”, J. Math. Sci., 131:5 (2005), 5904–5918 | DOI | MR | Zbl
[15] Artamonov V. A. \newblock Quantum polynomials, Advances in Algebra and Combinatorics, World Scientific, Singapore, 2008, 19–34 | DOI | MR | Zbl
[16] Artin M., Noncommutative Rings, Preprint, 1999
[17] Arzhantsev I., Kuyumzhiyan K., Zaidenberg M., “Infinite transitivity, finite generation, and {Demazure} roots”, Adv. Math., 351 (2019), 1–32 | DOI | MR | Zbl
[18] Asanuma T., Non-linearizable algebraic $k^*$-actions on affine spaces, Preprint, 1996 | MR
[19] Backelin E., “Endomorphisms of quantized {Weyl} algebras”, Lett. Math. Phys., 97:3 (2011), 317–338 | DOI | MR | Zbl
[20] Bass H., “A non-triangular action of $G_a$ on $A^3$”, J. Pure Appl. Algebra., 33:1 (1984), 1–5 | DOI | MR | Zbl
[21] Bass H., Connell E. H., Wright D., “The {Jacobian} conjecture: reduction of degree and formal expansion of the inverse”, Bull. Am. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl
[22] Bavula V. V., “A question of Rentschler and the Dixmier problem”, Ann. Math. (2)., 154:3 (2001), 683–702 | DOI | MR | Zbl
[23] Bavula V. V., Generalized Weyl algebras and diskew polynomial rings, arXiv: 1612.08941 [math.RA] | MR
[24] Bavula V. V., “The group of automorphisms of the Lie algebra of derivations of a polynomial algebra”, J. Alg. Appl., 16:5 (2017), 1750088 | DOI | MR | Zbl
[25] Bavula V. V., “The groups of automorphisms of the Lie algebras of formally analytic vector fields with constant divergence”, C. R. Math., 352:2 (2014), 85–88 | DOI | MR | Zbl
[26] Bavula V. V., “The inversion formulae for automorphisms of Weyl algebras and polynomial algebras”, J. Pure Appl. Algebra., 210 (2007), 147–159 | DOI | MR | Zbl
[27] Bavula V. V., “The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic”, J. Pure Appl. Algebra., 212:10 (2008), 2320–2337 | DOI | MR | Zbl
[28] Bavula V. V., “An analogue of the conjecture of Dixmier is true for the algebra of polynomial integro-differential operators”, J. Algebra., 372 (2012), 237–250 | DOI | MR | Zbl
[29] Bavula V. V., “Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an authomorphism”, C. R. Acad. Sci. Paris. Ser. 1., 350:11–12 (2012), 553–556 | DOI | MR | Zbl
[30] Bavula V. V., The Jacobian conjecture$_{2n}$ implies the Dixmier problem$_n$, arXiv: math/0512250[math.RA] | MR
[31] Beauville A., Colliot-Thelene J.-L., Sansuc J.-J., and Swinnerton-Dyer P., “Varietes stablement rationnelles non rationnelles”, Ann. Math., 121 (1985), 283–318 | DOI | MR | Zbl
[32] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Phys., 111:1 (1978), 61–110 | DOI | MR | Zbl
[33] Belov A., “Linear recurrence equations on a tree”, Math. Notes., 78:5 (2005), 603–609 | DOI | MR | Zbl
[34] Belov A., “Local finite basis property and local representability of varieties of associative rings.”, Izv. Math., 74 (2010), 1–126 | DOI | MR | Zbl
[35] Belov A., Bokut L., Rowen L., Yu J.-T., “The {Jacobian} conjecture, together with {Specht} and {Burnside}-type problems”, Automorphisms in Birational and Affine Geometry, Springer, 2014, 249–285 | MR | Zbl
[36] Belov A., Makar-Limanov L., Yu J. T., “On the generalised cancellation conjecture”, J. Algebra., 281 (2004), 161–166 | DOI | MR | Zbl
[37] Belov A., Rowen L. H., Vishne U., “Structure of Zariski-closed algebras”, Trans. Am. Math. Soc., 362 (2012), 4695–4734 | DOI | MR
[38] Belov-Kanel A., Yu J.-T., “On the lifting of the Nagata automorphism”, Selecta Math., 17 (2011), 935–945 | DOI | MR | Zbl
[39] Kanel-Belov A., Berzins A., Lipyanski R., “Automorphisms of the semigroup of endomorphisms of free associative algebras”, Int. J. Algebra Comp., 17:5/6 (2007), 923–939 | DOI | MR | Zbl
[40] Belov-Kanel A., Elishev A., “On planar algebraic curves and holonomic {$D$}-modules in positive characteristic”, J. Algebra Appl., 15:8 (2016), 1650155 | DOI | MR | Zbl
[41] Belov-Kanel A., Kontsevich M., “Automorphisms of the {Weyl} algebra”, Lett. Math. Phys., 74:2 (2005), 181–199 | DOI | MR | Zbl
[42] Belov-Kanel A., Kontsevich M., “The {Jacobian} conjecture is stably equivalent to the {Dixmier} conjecture”, Moscow Math. J., 7:2 (2007), 209–218 | DOI | MR | Zbl
[43] Belov-Kanel A., Lipyanski R., “Automorphisms of the endomorphism semigroup of a polynomial algebra”, J. Algebra., 333:1 (2011), 40–54 | DOI | MR | Zbl
[44] Belov-Kanel A., Yu J.-T., “Stable tameness of automorphisms of $F\langle x,y,z\rangle$ fixing $z$”, Selecta Math., 18 (2012), 799–802 | DOI | MR | Zbl
[45] Bergman G. M., “Centralizers in free associative algebras”, Trans. Am. Math. Soc., 137 (1969), 327–344 | DOI | MR | Zbl
[46] Bergman G. M., “The diamond lemma for ring theory”, Adv. Math., 29:2 (1978), 178–218 | DOI | MR
[47] Berson J., van den Essen A., Wright D., “Stable tameness of two-dimensional polynomial automorphisms over a regular ring”, Adv. Math., 230 (2012), 2176–2197 | DOI | MR | Zbl
[48] Birman J., “An inverse function theorem for free groups”, Proc. Am. Math. Soc., 41 (1973), 634–638 | DOI | MR | Zbl
[49] Bonnet P., Vénéreau S., “Relations between the leading terms of a polynomial automorphism”, J. Algebra., 322:2 (2009), 579—599 | DOI | MR | Zbl
[50] Berzins A., The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebras, arXiv: abs/math/0504015 [math.AG] | MR
[51] Białynicki-Birula A., “Remarks on the action of an algebraic torus on $k^n$, I”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14 (1966), 177–181 | MR
[52] Białynicki-Birula A., “Remarks on the action of an algebraic torus on $k^n$, II”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 15 (1967), 123–125 | MR | Zbl
[53] Białynicki-Birula A., “Some theorems on actions of algebraic groups”, Ann. Math., 98:3 (1973), 480–497 | DOI | MR | Zbl
[54] Bitoun T., The $p$-support of a holonomic {$D$}-module is lagrangian, for $p$ large enough, arXiv: 1012.4081 [math.AG]
[55] Bodnarchuk Yu., “Every regular automorphism of the affine Cremona group is inner”, J. Pure Appl. Algebra., 157 (2001), 115–119 | DOI | MR | Zbl
[56] Bokut L., Zelmanov E., Selected works of {A. I. Shirshov}, Springer, 2009 | MR
[57] Bokut L. A., “Embedding {Lie} algebras into algebraically closed {Lie} algebras”, Algebra Logika., 1 (1962), 47–53 | MR | Zbl
[58] Bokut L. A., “Embedding of algebras into algebraically closed algebras”, Dokl. Akad. Nauk., 145:5 (1962), 963–964 | MR | Zbl
[59] Bokut L. A., “Theorems of embedding in the theory of algebras”, Colloq. Math., 14 (1966), 349–353 | DOI | MR | Zbl
[60] Brešar M., Procesi C., Špenko Š., Functional identities on matrices and the {Cayley–Hamilton} polynomial, arXiv: 1212.4597 [math.RA]
[61] Campbell L. A., “A condition for a polynomial map to be invertible”, Math. Ann., 205:3 (1973), 243–248 | DOI | MR
[62] Cohn P. M., “Subalgebras of free associative algebras”, Proc. London Math. Soc., 3:4 (1964), 618–632 | DOI | MR | Zbl
[63] Cohn P. M., “Progress in free associative algebras”, Isr. J. Math., 19:1-2 (1974), 109–151 | DOI | MR
[64] Cohn P. M., “A brief history of infinite-dimensional skew fields”, Math. Sci., 17 (1992), 1–14 | MR | Zbl
[65] Cohn P. M., Free Rings and Their Relations, Academic Press, 1985 | MR | Zbl
[66] Czerniakiewicz A. J., “Automorphisms of a free associative algebra of rank $2$. I”, Trans. Am. Math. Soc., 160 (1971), 393–401 | MR | Zbl
[67] Czerniakiewicz A. J., “Automorphisms of a free associative algebra of rank $2$. II”, Trans. Am. Math. Soc., 171 (1972), 309–315 | DOI | MR | Zbl
[68] Danielewski W., On the cancellation problem and automorphism groups of affine algebraic varieties, Preprint, Warsaw, 1989
[69] De Bondt M., van den Essen A., The {Jacobian} conjecture for symmetric Druzkowski mappings, University of Nijmegen, 2004 | MR
[70] De Bondt M., van den Essen A., “A reduction of the {Jacobian} conjecture to the symmetric case”, Proc. Am. Math. Soc., 133:8 (2005), 2201–2205 | DOI | MR | Zbl
[71] De Concini C., Procesi C., “A characteristic free approach to invariant theory”, Young Tableaux in Combinatorics, Invariant Theory, and Algebra, Elsevier, 1982, 169–193 | DOI | MR
[72] Déserti J., “Sur le groupe des automorphismes polynomiaux du plan affine”, J. Algebra., 297 (2006), 584–599 | DOI | MR
[73] Dicks W., “Automorphisms of the free algebra of rank two”, Contemp. Math., 43 (1985), 63–68 | DOI | MR | Zbl
[74] Dicks W., Lewin J., “Jacobian conjecture for free associative algebras”, Commun. Algebra., 10:12 (1982), 1285–1306 | DOI | MR | Zbl
[75] Dixmier J., “Sur les algebres de Weyl”, Bull. Soc. Math. France., 96 (1968), 209–242 | DOI | MR | Zbl
[76] Dodd C., The $p$-cycle of holonomic {$D$}-modules and auto-equivalences of the {Weyl} algebra, arXiv: 1510.05734 [math.OC]
[77] Donkin S., “Invariants of several matrices”, Inv. Math., 110:1 (1992), 389–401 | DOI | MR | Zbl
[78] Donkin S., “Invariant functions on matrices”, Math. Proc. Cambridge Phil. Soc., 113:1 (1993), 23–43 | DOI | MR | Zbl
[79] Drensky V., Yu J.-T., “A cancellation conjecture for free associative algebras”, Proc. Am. Math. Soc., 136:10 (2008), 3391–3394 | DOI | MR | Zbl
[80] Drensky V., Yu J.-T., “The strong Anick conjecture”, Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 4836–4840 | DOI | MR | Zbl
[81] Drensky V., Yu J.-T., “Coordinates and automorphisms of polynomial and free associative algebras of rank three”, Front. Math. China., 2:1 (2007), 13–46 | DOI | MR | Zbl
[82] Drensky V., Yu J.-T., “The strong Anick conjecture is true”, J. Eur. Math. Soc., 9 (2007), 659–679 | DOI | MR | Zbl
[83] Drużkowski L., “An effective approach to {Keller's Jacobian} conjecture”, Math. Ann., 264:3 (1983), 303–313 | DOI | MR | Zbl
[84] Drużkowski L., “The {Jacobian} conjecture: symmetric reduction and solution in the symmetric cubic linear case”, Ann. Polon. Math., 87:1 (2005), 83–92 | MR | Zbl
[85] Drużkowski L. M., “New reduction in the Jacobian conjecture”, Effective Methods in Algebraic and Analytic Geometry, Univ. Iagel. Acta Math., Kraków, 2001, 203–206 | Zbl
[86] Elishev A., Automorphisms of polynomial algebras, quantization and {Kontsevich} conjecture, PhD Thesis, Moscow Institute of Physics and Technology, 2019
[87] Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W., Noncommutative {Białynicki-Birula} theorem., arXiv: 1808.04903 [math.AG] | MR
[88] Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W., Torus actions on free associative algebras, lifting and {Białynicki-Birula} type theorems, arXiv: 1901.01385 [math.AG]
[89] van den Bergh M., “On involutivity of {$p$}-support”, Int. Math. Res. Not., 15 (2015), 6295–6304 | MR | Zbl
[90] van den Essen A., The amazing image conjecture, arXiv: 1006.5801 [math.AG]
[91] van den Essen A., de Bondt M., “Recent progress on the Jacobian conjecture”, Ann. Polon. Math., 87 (2005), 1–11 | DOI | MR | Zbl
[92] van den Essen A., de Bondt M., “The Jacobian conjecture for symmetric Druźkowski mappings”, Ann. Polon. Math., 86:1 (2005), 43–46 | DOI | MR | Zbl
[93] van den Essen A., Wright D., Zhao W., “On the image conjecture”, J. Algebra., 340 (2011), 211—224 | DOI | MR | Zbl
[94] Fox R. H., “Free differential calculus, I. Derivation in the free group ring”, Ann. Math. (2)., 57 (1953), 547–560 | DOI | MR
[95] Gizatullin M. Kh., Danilov V. I., “Automorphisms of affine surfaces, I”, Izv. Math., 9:3 (1975), 493–534 | DOI | MR
[96] Gizatullin M. Kh., Danilov V. I., “Automorphisms of affine surfaces, II”, Izv. Math., 11:1 (1977), 51–98 | DOI | MR | Zbl
[97] Gorni G., Zampieri G., “Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse”, Polon. Math., 64 (1996), 285–290 | DOI | MR | Zbl
[98] Fedosov B., “A simple geometrical construction of deformation quantization”, J. Differ. Geom., 40:2 (1994), 213–238 | DOI | MR | Zbl
[99] Frayne T., Morel A. C., Scott D. S., “Reduced direct products”, J. Symb. Logic., 31:3, 506–507
[100] Fulton W., Harris J., Representation Theory. A First Course, Springer-Verlag, 1991 | MR | Zbl
[101] Furter J.-P., Kraft H., On the geometry of the automorphism groups of affine varieties, arXiv: 1809.04175 [math.AG]
[102] Gutwirth A., “The action of an algebraic torus on the affine plane”, Trans. Am. Math. Soc., 105:3 (1962), 407–414 | DOI | MR | Zbl
[103] Jung H. W. E., “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 184 (1942), 161–174 | DOI | MR
[104] Kaliman S., Koras M., Makar-Limanov L., Russell P., “$C^*$-actions on {$C^3$} are linearizable”, Electron. Res. Announc. Am. Math. Soc., 3 (1997), 63–71 | DOI | MR | Zbl
[105] Kaliman S., Zaidenberg M., “Families of affine planes: the existence of a cylinder”, Michigan Math. J., 49 (2001), 353–367 | DOI | MR | Zbl
[106] Kuroda S., “Shestakov–Umirbaev reductions and Nagata's conjecture on a polynomial automorphism”, Tôhoku Math. J., 62 (2010), 75–115 | DOI | MR | Zbl
[107] Kuzmin E., Shestakov I. P., “Nonassociative structures”, Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr., 57 (1990), 179–266 | MR
[108] Karas' M., “Multidegrees of tame automorphisms of $C^n$”, Dissert. Math., 477 (2011) | DOI | MR | Zbl
[109] Khoroshkin A., Piontkovski D., On generating series of finitely presented operads, arXiv: 1202.5170 [math.QA] | MR
[110] Kambayashi T., “Pro-affine algebras, {Ind}-affine groups and the {Jacobian} problem”, J. Algebra., 185:2 (1996), 481–501 | DOI | MR | Zbl
[111] Kambayashi T., “Some basic results on pro-affine algebras and {Ind}-affine schemes”, Osaka J. Math., 40:3 (2003), 621–638 | MR | Zbl
[112] Kambayashi T., Russell P., “On linearizing algebraic torus actions”, J. Pure Appl. Algebra., 23:3 (1982), 243–250 | DOI | MR | Zbl
[113] Kanel-Belov A., Borisenko V., Latysev V., “Monomial algebras”, J. Math. Sci., 87:3 (1997), 3463–3575 | DOI | MR | Zbl
[114] Kanel-Belov A., Elishev A., On planar algebraic curves and holonomic $\mathcal{D}$-modules in positive characteristic, arXiv: 1412.6836 [math.AG] | MR
[115] Kanel-Belov A., Elishev A., Yu J.-T., Independence of the {B-KK} isomorphism of infinite prime, arXiv: 1512.06533 [math.AG]
[116] Kanel-Belov A., Elishev A., Yu J.-T., “Augmented polynomial symplectomorphisms and quantization”, arXiv: 1812.02859 [math.AG]
[117] Kanel-Belov A., Grigoriev S., Elishev A., Yu J.-T., Zhang W., “Lifting of polynomial symplectomorphisms and deformation quantization”, Commun. Algebra., 46:9 (2018), 3926–3938 | DOI | MR | Zbl
[118] Kanel-Belov A., Malev S., Rowen L., “The images of noncommutative polynomials evaluated on $2\times 2$ matrices”, Proc. Am. Math. Soc., 140 (2012), 465–478 | DOI | MR | Zbl
[119] Kanel-Belov A., Malev S., Rowen L., “The images of multilinear polynomials evaluated on $3\times 3$ matrices”, Proc. Am. Math. Soc., 144 (2016), 7–19 | DOI | MR | Zbl
[120] Kanel-Belov A., Razavinia F., Zhang W., “Bergman's centralizer theorem and quantization”, Commun. Algebra., 46:5 (2018), 2123–2129 | DOI | MR | Zbl
[121] Kanel-Belov A., Razavinia F., Zhang W., Centralizers in free associative algebras and generic matrices, arXiv: 1812.03307 [math.RA]
[122] Kanel-Belov A., Rowen L. H., Vishne U., “Full exposition of Specht's problem”, Serdica Math. J., 38 (2012), 313–370 | MR | Zbl
[123] Kanel-Belov A., Yu J.-T., Elishev A., “On the augmentation topology of automorphism groups of affine spaces and algebras”, Int. J. Algebra Comput. *, 28:08 (2018), 1449–1485 | DOI | MR | Zbl
[124] Keller B., Notes for an Introduction to {Kontsevich's} Quantization Theorem, 2003
[125] Keller O. H., “Ganze Cremona Transformationen”, Monatsh. Math. Phys., 47:1 (1939), 299–306 | DOI | MR
[126] Kolesnikov P. S., “The {Makar-Limanov} algebraically closed skew field”, Algebra Logic., 39:6 (2000), 378–395 | DOI | MR | Zbl
[127] Kolesnikov P. S., “Different definitions of algebraically closed skew fields”, Algebra Logic., 40:4 (2001), 219–230 | DOI | MR | Zbl
[128] Kontsevich M., “Deformation quantization of {Poisson} manifolds”, Lett. Math. Phys., 66:3 (2003), 157–216 | DOI | MR | Zbl
[129] Kontsevich M., “Holonomic {$D$}-modules and positive characteristic”, Jpn. J. Math., 4:1 (2009), 1–25 | DOI | MR | Zbl
[130] Koras M., Russell P., “$C^*$-actions on $C^3$: The smooth locus of the quotient is not of hyperbolic type”, J. Alg. Geom., 8:4 (1999), 603–694 | MR | Zbl
[131] Kovalenko S., Perepechko A., Zaidenberg M., “On automorphism groups of affine surfaces”, Algebraic Varieties and Automorphism Groups, Math. Soc. Jpn., 2017, 207–286 | DOI | MR | Zbl
[132] Kraft H., Regeta A., “Automorphisms of the {Lie} algebra of vector fields”, J. Eur. Math. Soc., 19:5 (2017), 1577–1588 | DOI | MR | Zbl
[133] Kraft H., Stampfli I., “On automorphisms of the affine {Cremona} group”, Ann. Inst. Fourier., 63:3 (2013), 1137–1148 | DOI | MR | Zbl
[134] Kulikov V. S., “Generalized and local {Jacobian} problems”, Izv. Math., 41:2 (1993), 351–365 | DOI | MR
[135] Kulikov V. S., “The {Jacobian} conjecture and nilpotent maps”, J. Math. Sci., 106:5 (2001), 3312–3319 | DOI | MR | Zbl
[136] Levy R., Loustaunau P., Shapiro J., “The prime spectrum of an infinite product of copies of $Z$”, Fundam. Math., 138 (1991), 155–164 | DOI | MR | Zbl
[137] Li Y.-C., Yu J.-T., “Degree estimate for subalgebras”, J. Algebra., 362 (2012), 92–98 | DOI | MR | Zbl
[138] Gaiotto D., Witten E., Probing quantization via branes, arXiv: 2107.12251 [hep-th]
[139] Lothaire M., Combinatorics on Words, Cambridge Univ. Press, 1997 | MR | Zbl
[140] Makar-Limanov L., A new proof of the Abhyankar–Moh-=Suzuki theorem, arXiv: 1212.0163 [math.AC]
[141] Makar-Limanov L., “Automorphisms of a free algebra with two generators”, Funct. Anal. Appl., 4:3 (1970), 262–264 | DOI | MR
[142] Makar-Limanov L., “On automorphisms of {Weyl} algebra”, Bull. Soc. Math. France., 112 (1984), 359–363 | DOI | MR | Zbl
[143] Makar-Limanov L., Yu J.-T., “Degree estimate for subalgebras generated by two elements”, J. Eur. Math. Soc., 10 (2008), 533–541 | DOI | MR | Zbl
[144] Makar-Limanov L., “Algebraically closed skew fields”, J. Algebra., 93:1 (1985), 117–135 | DOI | MR | Zbl
[145] Makar-Limanov L., Turusbekova U., Umirbaev U., “Automorphisms and derivations of free {Poisson} algebras in two variables”, J. Algebra., 322:9 (2009), 3318–3330 | DOI | MR | Zbl
[146] Markl M., Shnider S., Stasheff J., Operads in Algebra, Topology, and Physics, Am. Math. Soc., Providence, Rhode Island, 2002 | MR | Zbl
[147] Miyanishi M., Sugie T., “Affine surfaces containing cylinderlike open sets”, J. Math. Kyoto Univ., 20 (1980), 11–42 | MR | Zbl
[148] Nagata M., On the automorphism group of $k[x,y]$, Kinokuniya, Tokyo, 1972 | MR
[149] Nielsen J., “Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden”, Math. Ann., 78 (1918), 385–397 | DOI | MR
[150] Nielsen J., “Die Isomorphismengruppe der freien Gruppen”, Math. Ann., 91 (1924), 169–209 | DOI | MR | Zbl
[151] Ol'shanskij A. Yu., “Groups of bounded period with subgroups of prime order”, Algebra and Logic., 21 (1983), 369–418 | DOI | Zbl
[152] Peretz R., “Constructing polynomial mappings using non-commutative algebras”, Affine Algebraic Geometry, Am. Math. Soc., Providence, Rhode Island, 2005, 197–232 | DOI | MR | Zbl
[153] Piontkovski D., Operads versus Varieties: a dictionary of universal algebra, Preprint, 2011
[154] Piontkovski D., “On Kurosh problem in varieties of algebras”, J. Math. Sci., 163:6 (2009), 743–750 | DOI | MR | Zbl
[155] Razmyslov Yu. P., “Algebras satisfying identity relations of Capelli type”, Izv. Akad. Nauk SSSR. Ser. Mat., 45 (1981), 143–166, 240 | MR | Zbl
[156] Razmyslov Yu. P., Identities of Algebras and Their Representations, Am. Math. Soc., Providence, Rhode Island, 1994 | MR | Zbl
[157] Razmyslov Yu. P., Zubrilin K. A., “Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type”, Russ. Math. Surveys, 48 (1993), 183–184 | DOI | MR | Zbl
[158] Reutenauer C., “Applications of a noncommutative Jacobian matrix”, J. Pure Appl. Algebra., 77 (1992), 634–638 | DOI | MR
[159] Rowen L. H., Graduate Algebra: Noncommutative View, Am. Math. Soc., Providence, Rhode Island, 2008 | MR | Zbl
[160] Moh T.-T., On the global {Jacobian} conjecture for polynomials of degree less than 100, Preprint, 1983 | MR
[161] Moh T.-T., “On the {Jacobian} conjecture and the configurations of roots”, J. Reine Angew. Math., 340 (1983), 140–212 | MR | Zbl
[162] Moyal J. E., “Quantum mechanics as a statistical theory”, Math. Proc. Cambridge Philos. Soc., 45:1 (1949), 99–124 | DOI | MR | Zbl
[163] Orevkov S. Yu., “The commutant of the fundamental group of the complement of a plane algebraic curve”, Russ. Math. Surv., 45:1 (1990), 221–222 | DOI | MR | Zbl
[164] Orevkov S. Yu., “An example in connection with the {Jacobian} conjecture”, Math. Notes., 47:1 (1990), 82–88 | DOI | MR | Zbl
[165] Orevkov S. Yu., “The fundamental group of the complement of a plane algebraic curve”, Sb. Math., 65:1 (1990), 267–267 | DOI | MR | Zbl
[166] Plotkin B., “Varieties of algebras and algebraic varieties”, Israel J. Math., 96:2 (1996), 511–522 | DOI | MR | Zbl
[167] Plotkin B., Algebras with the same (algebraic) geometry, arXiv: math/0210194 [math.GM] | MR
[168] Popov V. L., Around the {Abhyankar-Sathaye} conjecture, arXiv: 1409.6330 [math.AG] | MR
[169] Procesi C., Rings with Polynomial Identities, Marcel Dekker, 1973 | MR | Zbl
[170] Procesi C., “The invariant theory of $n\times n$ matrices”, Adv. Math., 19:3 (1976), 306–381 | DOI | MR | Zbl
[171] Razar M., “Polynomial maps with constant {Jacobian}”, Israel J. Math., 32:2-3 (1979), 97–106 | DOI | MR | Zbl
[172] Robinson A., Non-Standard Analysis, Princeton Univ. Press, 2016 | MR
[173] Rosset S., “A new proof of the {Amitsur–Levitzki} identity”, Israel J. Math., 23:2 (1976), 187–188 | DOI | MR | Zbl
[174] Rowen L. H., Graduate Algebra: Noncommutative View, Am. Math. Soc., Providence, Rhode Island, 2008 | MR | Zbl
[175] Schofield A. H., Representations of Rings over Skew Fields, Cambridge Univ. Press, Cambridge, 1985 | MR
[176] Schwarz G., “Exotic algebraic group actions”, C. R. Acad. Sci. Paris, 309 (1989), 89–94 | MR | Zbl
[177] Shafarevich I. R., “On some infinite-dimensional groups, II”, Izv. Ross. Akad. Nauk. Ser. Mat., 45:1 (1981), 214–226 | MR | Zbl
[178] Sharifi Y., Centralizers in Associative Algebras, Ph.D. thesis, 2013 | MR
[179] Shestakov I. P., “Finite-dimensional algebras with a nil basis”, Algebra Logika., 10 (1971), 87–99 | MR | Zbl
[180] Shestakov I. P., Umirbaev U. U., “Degree estimate and two-generated subalgebras of rings of polynomials”, J. Am. Math. Soc., 17 (2004), 181–196 | DOI | MR | Zbl
[181] Shestakov I., Umirbaev U., “The {Nagata} automorphism is wild”, Proc. Natl. Acad. Sci., 100:22 (2003), 12561–12563 | DOI | MR | Zbl
[182] Shestakov I., Umirbaev U., “Poisson brackets and two-generated subalgebras of rings of polynomials”, J. Am. Math. Soc., 17:1 (2004), 181–196 | DOI | MR | Zbl
[183] Shestakov I. P., Umirbaev U. U., “The tame and the wild automorphisms of polynomial rings in three variables”, J. Am. Math. Soc., 17 (2004), 197–220 | DOI | MR
[184] Umirbaev U., Shestakov I., “Subalgebras and automorphisms of polynomial rings”, Dokl. Ross. Akad. Nauk, 386:6 (2002), 745–748 | MR | Zbl
[185] Shpilrain V., “On generators of $L/R^2$ Lie algebras”, Proc. Am. Math. Soc., 119 (1993), 1039–1043 | MR | Zbl
[186] Singer D., “On Catalan trees and the Jacobian conjecture”, Electron. J. Combin., 8:1 (2001), 2 | MR
[187] Shpilrain V., Yu J.-T., “Affine varieties with equivalent cylinders”, J. Algebra., 251:1 (2002), 295–307 | DOI | MR | Zbl
[188] Shpilrain V., Yu J.-T., “Factor algebras of free algebras: on a problem of G. Bergman”, Bull. London Math. Soc., 35 (2003), 706–710 | DOI | MR | Zbl
[189] Suzuki M., “Propiétés topologiques des polynômes de deux variables complexes, et automorphismes algébraique de l'espace $C^2$”, J. Math. Soc. Jpn., 26 (1974), 241–257 | DOI | MR | Zbl
[190] Tsuchimoto Y. \newblock Preliminaries on {Dixmier} conjecture, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 24 (2003), 43–59 | MR | Zbl
[191] Tsuchimoto Y., “Endomorphisms of {Weyl} algebra and $p$-curvatures”, Osaka J. Math., 42:2 (2005), 435–452 | MR | Zbl
[192] Tsuchimoto Y., “Auslander regularity of norm based extensions of Weyl algebra”, arXiv: 1402.7153 [math.AG]
[193] Umirbaev U., “On the extension of automorphisms of polynomial rings”, Sib. Math. J., 36:4 (1995), 787–791 | DOI | MR | Zbl
[194] Umirbaev U. U., “On Jacobian matrices of Lie algebras”, Proc. 6 All-Union Conf. on Varieties of Algebraic Systems, Magnitogorsk, 1990, 32–33 | MR
[195] Umirbaev U. U., “Shreer varieties of algebras”, Algebra Logic., 33 (1994), 180–193 | DOI | Zbl
[196] Umirbaev U. U., Tame and wild automorphisms of polynomial algebras and free associative algebras, Preprint MPIM 2004–108. | MR
[197] Umirbaev U., “The {Anick} automorphism of free associative algebras”, J. Reine Angew. Math., 605 (2007), 165–178 | MR | Zbl
[198] Umirbaev U. U., “Defining relations of the tame automorphism group of polynomial algebras in three variables”, J. Reine Angew. Math., 600 (2006), 203–235 | MR | Zbl
[199] Umirbaev U. U., “Defining relations for automorphism groups of free algebras”, J. Algebra., 314 (2007), 209–225 | DOI | MR | Zbl
[200] Umirbaev U. U., Yu J.-T., “The strong Nagata conjecture”, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 4352–4355 | DOI | MR | Zbl
[201] Urech C., Zimmermann S., Continuous automorphisms of {Cremona} groups, arXiv: 1909.11050 [math.AG] | MR
[202] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Birkhäuser, 2012 | MR
[203] van der Kulk W., “On polynomial rings in two variables”, Nieuw Arch. Wisk. (3), 1 (1953), 33–41 | MR | Zbl
[204] Vitushkin A. G., “A criterion for the representability of a chain of $\sigma$-processes by a composition of triangular chains”, Math. Notes, 65:5-6 (1999), 539–547 | DOI | MR | Zbl
[205] Vitushkin A. G., “On the homology of a ramified covering over $C^2$”, Math. Notes., 64:5 (1998), 726–731 | DOI | MR | Zbl
[206] Vitushkin A. G., “Evaluation of the {Jacobian} of a rational transformation of {$C^2$} and some applications”, Math. Notes, 66:2 (1999), 245–249 | DOI | MR | Zbl
[207] Wedderburn J. H. M., “Note on algebras”, Ann. Math., 38 (1937), 854–856 | DOI | MR
[208] Wright D., The Jacobian conjecture as a problem in combinatorics, arXiv: math/0511214 [math.CO] | MR
[209] Wright D., “The Jacobian conjecture: Ideal membership questions and recent advances”, Contemp. Math., 369 (2005), 261–276 | DOI | MR | Zbl
[210] Yagzhev A. V., “Finiteness of the set of conservative polynomials of a given degree”, Math. Notes., 41:2 (1987), 86–-88 | DOI | MR | Zbl
[211] Yagzhev A. V., “Nilpotency of extensions of an abelian group by an abelian group”, Math. Notes., 43:3-4 (1988), 244–245 | DOI | MR | Zbl
[212] Yagzhev A. V., “Locally nilpotent subgroups of the holomorph of an abelian group”, Mat. Zametki, 46:6 (1989), 118 | MR | Zbl
[213] Yagzhev A. V., “A sufficient condition for the algebraicity of an automorphism of a group”, Algebra Logic., 28:1 (1989), 83–85 | DOI | MR | Zbl
[214] Yagzhev A. V. , “The generators of the group of tame automorphisms of an algebra of polynomials”, Sib. Mat. Zh., 18:1 (1977), 222–225 | DOI | MR | Zbl
[215] Wang S., “A {Jacobian} criterion for separability”, J. Algebra., 65:2 (1980), 453–494 | DOI | MR | Zbl
[216] Wright D., “On the {Jacobian} conjecture”, Ill. J. Math., 25:3 (1981), 423–440 | MR | Zbl
[217] Yagzhev A. V., “Invertibility of endomorphisms of free associative algebras”, Math. Notes., 49:3–4 (1991), 426–-430 | DOI | MR | Zbl
[218] Yagzhev A. V., “Endomorphisms of free algebras”, Sib. Math. J., 21:1 (1980), 133–-141 | DOI | MR | Zbl
[219] Yagzhev A. V., “On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank”, Sib. Math. J., 21:1 (1980), 142–146 | DOI | MR | Zbl
[220] Yagzhev A. V., “Keller's problem”, Sib. Math. J., 21:5 (1980), 747–754 | DOI | MR | Zbl
[221] A. V. Yagzhev, “Engel algebras satisfying Capelli identities”, Proceedings of Shafarevich Seminar, Steklov Math. Inst., Moscow, 2000, 83–88 (in Russian)
[222] A. V. Yagzhev, “Endomorphisms of polynomial rings and free algebras of different varieties”, Proceedings of Shafarevich Seminar, Steklov Math. Inst., Moscow, 2000, 15–47 (in Russian)
[223] Yagzhev A. V., Invertibility criteria of a polynomial mapping, Unpublished (in Russian)
[224] Zaks A., “Dedekind subrings of $K[x_1,\dots,x_n]$ are rings of polynomials”, Israel J. Math., 9 (1971), 285–289 | DOI | MR | Zbl
[225] Zelmanov E., “On the nilpotence of nilalgebras”, Lect. Notes Math., 1352 (1988), 227–240 | DOI | MR | Zbl
[226] Zhao W., “New proofs for the Abhyankar–Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture”, Proc. Am. Math. Soc., 139 (2011), 3141–3154 | DOI | MR | Zbl
[227] Zhao W., “Mathieu subspaces of associative algebras”, J. Algebra., 350 (2012), 245–272 | DOI | MR | Zbl
[228] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Nearly Associative Rings, Nauka, Moscow, 1978 (in Russian) | MR | Zbl
[229] Zubrilin K. A., “Algebras that satisfy the Capelli identities”, Sb. Math., 186:3 (1995), 359–370 | DOI | MR | Zbl
[230] Zubrilin K. A., “On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities”, Fundam. Prikl. Mat., 1:2 (1995), 409–430 | MR | Zbl
[231] Zubrilin K. A., “On the Baer ideal in algebras that satisfy the Capelli identities”, Sb. Math., 189 (1998), 1809–1818 | DOI | MR | Zbl
[232] Zaidenberg M. G., “On exotic algebraic structures on affine spaces”, Geometric Complex Analysis, World Scientific, 1996, 691–714 | MR | Zbl
[233] Zhang W., Alternative proof of Bergman's centralizer theorem by quantization, Master thesis, Bar-Ilan University, 2017
[234] Zhang W., Polynomial automorphisms and deformation quantization, Ph.D. thesis, Bar-Ilan University, 2019
[235] Zubkov A. N., “Matrix invariants over an infinite field of finite characteristic”, Sib. Math. J., 34:6 (1993), 1059–1065 | DOI | MR | Zbl
[236] Zubkov A. N., “A generalization of the Razmyslov–Procesi theorem”, Algebra Logic., 35:4 (1996), 241–254 | DOI | MR | Zbl