Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a9, author = {E. V. Nazarova and V. A. Khalova}, title = {An analog of the {Jordan--Dirichlet} theorem for an integral operator whose kernel has discontinuites on the diagonals}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {87--94}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2021_200_a9/} }
TY - JOUR AU - E. V. Nazarova AU - V. A. Khalova TI - An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 87 EP - 94 VL - 200 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2021_200_a9/ LA - ru ID - INTO_2021_200_a9 ER -
%0 Journal Article %A E. V. Nazarova %A V. A. Khalova %T An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 87-94 %V 200 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2021_200_a9/ %G ru %F INTO_2021_200_a9
E. V. Nazarova; V. A. Khalova. An analog of the Jordan--Dirichlet theorem for an integral operator whose kernel has discontinuites on the diagonals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 87-94. https://geodesic-test.mathdoc.fr/item/INTO_2021_200_a9/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[2] Burlutskaya M. Sh., “Analog teoremy Zhordana—Dirikhle dlya operatora differentsirovaniya na grafe”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2006, no. 2, 165–168 | Zbl
[3] Golub A. V., “Analog teoremy Zhordana—Dirikhle dlya integralnogo operatora obschego vida s involyutsiei, imeyuschei razryv”, Mat. 17 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 27 yanvarya — 3 fevralya 2014 g.), Nauchnaya kniga, Saratov, 2014, 78–79
[4] Gurevich A. P., Khromov A. P., “Summiruemost po Rissu spektralnykh razlozhenii odnogo klassa integralnykh operatorov”, Differ. uravn., 37:6 (2001), 809–814 | MR | Zbl
[5] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvenym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Mat. sb., 192:10 (2001), 33–50 | Zbl
[6] Koroleva O. A., “Teorema Zhordana—Dirikhle dlya operatora differentsirovaniya”, Matematika. Mekhanika., 2013, no. 15, 40–43
[7] Koroleva O. A., “Analog teoremy Zhordana—Dirikhle dlya integralnogo operatora s yadrom, imeyuschim skachki na lomanykh liniyakh”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 3:4-1 (2013), 14–22
[8] Nazarova E. V., “Zadacha tochnogo obrascheniya nekotorogo klassa integralnykh operatorov s razryvnymi yadrami”, Mat. 10 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Izd-vo Saratov. un-ta, Saratov, 2000, 96–97
[9] Nazarova E. V., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, razryvnymi po diagonalyakh”, Matematika. Mekhanika., 2002, no. 4, 102–105
[10] Nazarova E. V., Khalova V. A., “Teorema ravnoskhodimosti dlya integralnogo operatora s involyutsiei”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 17:3 (2017), 313–330 | MR | Zbl
[11] Khalova V. A., “Ob analoge teoremy Zhordana—Dirikhle dlya razlozhenii po sobstvennym funktsiyam odnogo klassa differentsialno-raznostnykh operatorov”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 10:3 (2010), 26–32
[12] Khromov A. P., “Smeshannaya zadacha dlya volnovogo uravneniya s proizvolnymi dvukhtochechnymi kraevymi usloviyami”, Dokl. RAN., 462:2 (2015), 148–150 | MR | Zbl
[13] Khromov A. P., Lukomskii S. F., Sidorov S. P., Terekhin P. A., Novye metody approksimatsii v zadachakh deistvitelnogo analiza i spektralnoi teorii, Izd-vo Saratov. un-ta, Saratov, 2015
[14] Khromov A. P., “On an analog of the Jordan–Dirichlet theorem for eigenfunction expansions of one differential-difference operator with an integral boundary condition”, J. Math. Sci., 144:4 (2007), 4267–4276 | DOI | MR | Zbl