Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_194_a14, author = {G. N. Sergazy}, title = {Application of $B$-splines within the method of empirical mode decomposition for expanding a two-dimensional time series into internal modes}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {163--166}, publisher = {mathdoc}, volume = {194}, year = {2021}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2021_194_a14/} }
TY - JOUR AU - G. N. Sergazy TI - Application of $B$-splines within the method of empirical mode decomposition for expanding a two-dimensional time series into internal modes JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 163 EP - 166 VL - 194 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2021_194_a14/ LA - ru ID - INTO_2021_194_a14 ER -
%0 Journal Article %A G. N. Sergazy %T Application of $B$-splines within the method of empirical mode decomposition for expanding a two-dimensional time series into internal modes %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 163-166 %V 194 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2021_194_a14/ %G ru %F INTO_2021_194_a14
G. N. Sergazy. Application of $B$-splines within the method of empirical mode decomposition for expanding a two-dimensional time series into internal modes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 163-166. https://geodesic-test.mathdoc.fr/item/INTO_2021_194_a14/
[1] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR
[2] Huang N. E., “Introduction to the Hilbert–Huang transform and its related mathematical problems”, Interdisc. Math. Sci., 5 (2005), 1–26 | DOI | MR
[3] Huang N. E., Shen Z., Long R. S., Wu M. C., Shih H. H., Zheng Q., Yen N. C., Tung C. C., Liu H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proc. Roy. Soc. London Ser. A., 454 (1998), 903–995 | DOI | MR | Zbl
[4] Riemenschneider S., Liu B., Xu Y., Huang N. E., “$B$-Spline based empirical mode decomposition”, Interdisc. Math. Sci., 5 (2005), 27–55 | DOI | MR
[5] Rilling G., Flandrin P., Goncalves P., Lilly J. M., “Bivariate empirical mode decomposition”, IEEE Signal Process. Lett., 14:2 (2007), 936–939 | DOI
[6] Tanaka T., Mandic D. P., “Complex empirical mode decomposition”, IEEE Signal Process. Lett., 14:2 (2007), 101–104 | DOI