Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a2, author = {E. I. Biryukova}, title = {An analog of the {Jordan--Dirichlet} theorem for an operator with involution on a graph}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {17--24}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/} }
TY - JOUR AU - E. I. Biryukova TI - An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 17 EP - 24 VL - 193 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/ LA - ru ID - INTO_2021_193_a2 ER -
%0 Journal Article %A E. I. Biryukova %T An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 17-24 %V 193 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/ %G ru %F INTO_2021_193_a2
E. I. Biryukova. An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 17-24. https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/
[1] Burlutskaya M. Sh., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii odnogo klassa funktsionalno-differentsialnykh operatorov na grafe”, Differ. uravn., 45:6 (2009), 763–771 | MR | Zbl
[2] Burlutskaya M. Sh., “Teorema Zhordana—Dirikhle dlya funktsionalno-differentsialnogo operatora s involyutsiei”, Izv. Saratov. un-ta. Nov. ser., 13:3 (2013), 9–14 | Zbl
[3] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 1309–1312
[4] Burlutskaya M. Sh., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Differ. uravn., 43:12 (2007), 1597–1605 | MR | Zbl
[5] Burlutskaya M. Sh., Khromov A. P., “Ob odnoi teoreme ravnoskhodimosti na vsem otrezke dlya funktsionalno-differentsialnykh operatorov”, Izv. Saratov. un-ta. Nov. ser., 9:4 (2009), 3–10
[6] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998
[7] Platonov S. S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavod. gos. un-ta. Ser. mat., 11 (2004), 15–35
[8] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964
[9] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | DOI | MR | Zbl
[10] Kritskov L. V., Sarsenbi A. M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differ. Equations., 51:8 (2015), 984–990 | DOI | MR | Zbl
[11] Wiener J., Generalized Solutions of Functional-Differential Equations, World Scientific, 1993 | MR | Zbl