An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the convergence of eigenfunction expansions of a functional-differential operator with involution ν(x)=1x, which is defined on a geometric graph consisting of two edges, one of which is a loop. Sufficient conditions are obtained for the uniform convergence of the Fourier series in the eigenfunctions of the operator (an analog of the Jordan–Dirichlet theorem).
Mots-clés : functional-differential operator, involution, geometric graph, Fourier series.
@article{INTO_2021_193_a2,
     author = {E. I. Biryukova},
     title = {An analog of the {Jordan--Dirichlet} theorem for an operator with involution on a graph},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/}
}
TY  - JOUR
AU  - E. I. Biryukova
TI  - An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 17
EP  - 24
VL  - 193
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/
LA  - ru
ID  - INTO_2021_193_a2
ER  - 
%0 Journal Article
%A E. I. Biryukova
%T An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 17-24
%V 193
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/
%G ru
%F INTO_2021_193_a2
E. I. Biryukova. An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 17-24. https://geodesic-test.mathdoc.fr/item/INTO_2021_193_a2/

[1] Burlutskaya M. Sh., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii odnogo klassa funktsionalno-differentsialnykh operatorov na grafe”, Differ. uravn., 45:6 (2009), 763–771 | MR | Zbl

[2] Burlutskaya M. Sh., “Teorema Zhordana—Dirikhle dlya funktsionalno-differentsialnogo operatora s involyutsiei”, Izv. Saratov. un-ta. Nov. ser., 13:3 (2013), 9–14 | Zbl

[3] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 1309–1312

[4] Burlutskaya M. Sh., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Differ. uravn., 43:12 (2007), 1597–1605 | MR | Zbl

[5] Burlutskaya M. Sh., Khromov A. P., “Ob odnoi teoreme ravnoskhodimosti na vsem otrezke dlya funktsionalno-differentsialnykh operatorov”, Izv. Saratov. un-ta. Nov. ser., 9:4 (2009), 3–10

[6] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998

[7] Platonov S. S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavod. gos. un-ta. Ser. mat., 11 (2004), 15–35

[8] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964

[9] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | DOI | MR | Zbl

[10] Kritskov L. V., Sarsenbi A. M., “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differ. Equations., 51:8 (2015), 984–990 | DOI | MR | Zbl

[11] Wiener J., Generalized Solutions of Functional-Differential Equations, World Scientific, 1993 | MR | Zbl