On the Huygens effect and points of hopelessness in the T.~Puu macroeconomic model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the macroeconomic model proposed by T. Puu, which describes fluctuations in gross income in a given region. Under a special combination of savings and investment rates, income deviations occur only for a finite period of time, after which the income returns to a stationary state. In mathematical physics, this effect is called the Huygens effect (principle). Results of the study of the model by statistical methods allow one to speak about the plausibility of the hypothesis about the presence of the Huygens effect in certain periods of the history of the Russian economy. The question on the structure of the set of stationary zeros of nontrivial solutions of a stationary equation is considered.
Mots-clés : income distribution model, Huygens principle, Cauchy problem, dependence domain, stationary zeros of the solution.
@article{INTO_2021_191_a12,
     author = {M. V. Polovinkina and I. P. Polovinkin and S. A. Rabeeakh},
     title = {On the {Huygens} effect and points of hopelessness in the {T.~Puu} macroeconomic model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/INTO_2021_191_a12/}
}
TY  - JOUR
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
AU  - S. A. Rabeeakh
TI  - On the Huygens effect and points of hopelessness in the T.~Puu macroeconomic model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 129
EP  - 134
VL  - 191
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/INTO_2021_191_a12/
LA  - ru
ID  - INTO_2021_191_a12
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%A I. P. Polovinkin
%A S. A. Rabeeakh
%T On the Huygens effect and points of hopelessness in the T.~Puu macroeconomic model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 129-134
%V 191
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/INTO_2021_191_a12/
%G ru
%F INTO_2021_191_a12
M. V. Polovinkina; I. P. Polovinkin; S. A. Rabeeakh. On the Huygens effect and points of hopelessness in the T.~Puu macroeconomic model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 129-134. https://geodesic-test.mathdoc.fr/item/INTO_2021_191_a12/

[1] Azarnova T. V., Gogoleva T. N., Polovinkin I. P., Rabeeakh S. A., Schepina I. N., “Ob effekte Gyuigensa v nepreryvnoi modeli raspredeleniya dokhoda”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 21:6 (2016), 2143–2144, Tambov

[2] Azarnova T. V., Polovinkin I. P., Rabeeakh S. A., Schepina I. N., “Obsuzhdenie printsipa Gyuigensa v ramkakh makroekonomicheskoi modeli T. Pu”, Mat. 39 Mezhdunar. nauch. shk.-semin. «Sistemnoe modelirovanie sotsialno-ekonomicheskikh protsessov» (red. V. G. Grebennikov, I. N. Schepina), 2016, 468–472

[3] Zaitsev V. A., “O printsipe Gyuigensa dlya nekotorykh uravnenii s osobennostyami”, Dokl. AN SSSR., 242:1 (1978), 28–31 | MR | Zbl

[4] Zaitsev V. A., “O printsipe Gyuigensa poryadka $(p,q)$”, Dinamika zhidkosti so svobodnymi granitsami, In-t mat. Sib. otd. AN SSSR, Novosibirsk, 1980, 160–165

[5] Zaitsev V. A., “O suschestvovanii redkikh voln dlya odnoi sistemy pervogo poryadka”, Nekotorye voprosy teorii upravleniya dvizheniem, Saransk, 1980, 69–71

[6] Zaitsev V. A., “Slabye lakuny dlya odnomernykh strogo giperbolicheskikh uravnenii”, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, In-t mat. Sib. otd. AN SSSR, Novosibirsk, 1981, 66–68 | Zbl

[7] Zaitsev V. A., “Slabye lakuny dlya odnomernykh uravnenii s postoyannymi koeffitsientami”, Sib. mat. zh., 25:4 (1984), 54–62 | MR

[8] Ivanov L. A., “O printsipe Gyuigensa v chetnomernom prostranstve dlya nekotorykh uravnenii s osobennostyami”, Ukr. mat. zh., 31:5 (1979), 547–550 | MR | Zbl

[9] Ivanov L. A., “Uravneniya Eilera—Puassona—Darbu na sfere i ikh gyuigensovost”, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii, In-t mat. Sib. otd. AN SSSR, Novosibirsk, 1981, 69–71 | Zbl

[10] Ivanov L. A., “O formulakh Kirkhgofa v simmetricheskikh prostranstvakh ranga 1”, Dokl. AN SSSR., 247:4 (1981), 783–785

[11] Ivanov L. A., “Zadacha Koshi dlya nekotorykh operatorov s osobennostyami”, Differ. uravn., 18:6 (1982), 1020–1028 | MR | Zbl

[12] Ivanov L. A., “O fundamentalnykh resheniyakh nekotorykh singulyarnykh uravnenii”, Differentsialnye uravneniya i ikh primeneniya, v. 32, Vilnyus, 1982, 31–45

[13] Katrakhov V. V., Sitnik S. M., “Metod preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | MR

[14] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova., 89 (1967), 130–213 | Zbl

[15] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997

[16] Kipriyanov I. A., Ivanov L. A., “Zadacha Koshi dlya uravneniya Eilera—Puassona—Darbu v odnorodnom simmetricheskom rimanovom prostranstve, I”, Tr. Mat. in-ta im. V. A. Steklova., 170 (1984), 139-–147 | MR | Zbl

[17] Lyakhov L. N., Vesovye sfericheskie funktsii i potentsialy Rissa, porozhdennye obobschennym sdvigom, VGTA, Voronezh, 1997

[18] Petrovskii I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya. O diffuzii voln i lakunakh dlya giperbolicheskikh uravnenii, Nauka, M., 1986 | MR

[19] Polovinkin I. P., “K issledovaniyu lineinoi modeli T. Pu dinamiki dokhodov s uchetom mezhregionalnoi torgovli”, Differ. uravn., 48:6 (2012), 902–903

[20] Polovinkin I. P., “K issledovaniyu lineinoi modeli T. Pu dinamiki dokhodov s uchetom mezhregionalnoi torgovli”, Differ. uravn., 49:1 (2013), 132–136 | MR | Zbl

[21] Pu T., Nelineinaya ekonomicheskaya dinamika, Izd. dom «Udmurtskii universitet», Izhevsk, 2000

[22] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019