Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_179_a2, author = {M. D. Kovalev}, title = {What is a hinge mechanism? {And} what did {Kempe} prove?}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {16--28}, publisher = {mathdoc}, volume = {179}, year = {2020}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/INTO_2020_179_a2/} }
TY - JOUR AU - M. D. Kovalev TI - What is a hinge mechanism? And what did Kempe prove? JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 16 EP - 28 VL - 179 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/INTO_2020_179_a2/ LA - ru ID - INTO_2020_179_a2 ER -
M. D. Kovalev. What is a hinge mechanism? And what did Kempe prove?. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 16-28. https://geodesic-test.mathdoc.fr/item/INTO_2020_179_a2/
[1] Artobolevskii I. I., Teoriya mekhanizmov, Nauka, M., 1965 | MR
[2] Gilbert D., Kon-Fossen S., Naglyadnaya geometriya, Nauka, M., 1981
[3] Gorin E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov i algebraicheskikh funktsii ot neskolkikh peremennykh”, Usp. mat. nauk., 16:1 (97) (1961), 91–118 | MR | Zbl
[4] Kovalev M. D., “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN. Ser. mat., 58:1 (1994), 45–70 | Zbl
[5] Kovalev M. D., “O vosstanovimosti sharnirnikov po vnutrennim napryazheniyam”, Izv. RAN. Ser. mat., 61:4 (1997), 37–66 | MR | Zbl
[6] Kovalev M. D., “Ustoichivost sharnirnikov, sharnirnykh ustroistv i skhem”, Itogi nauki i tekhn. Sovr. mat. prilozh., 68 (1999), 65–86 | Zbl
[7] Kovalev M. D., “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestn. MGTU. Ser. Mashinostroenie., 2001, no. 4, 33–51
[8] Levitskii N. I., Teoriya mekhanizmov i mashin. Terminologiya, Nauka, M., 1984
[9] Oshemkov A. A., Popelenskii F. Yu., Tuzhilin A. A., Fomenko A. T., Shafarevich A. I., Kurs naglyadnoi geometrii i topologii, LENAND, M., 2015
[10] Abbott T., Generalizations of Kempe’s Universality Theorem, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008
[11] Asimov L., Roth B., “The rigidity of Graphs. II”, J. Math. Anal. Appl., 68:1 (1979), 171–190 | DOI | MR
[12] Bottema O., Roth B., Theoretical Kinematics, North-Holland, Amsterdam, 1979 | MR | Zbl
[13] Crapo H., “Structural Rigidity”, Struct. Topol., 1979, no. 1, 26–45 | MR | Zbl
[14] Demaine E., O'Rourke J., Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge Univ. Press, 2007 | MR | Zbl
[15] Graver J., Servatius B., Servatius H., Combinatorial Rigidity, Am. Math. Soc., Providence. Rhode Island, 1993 | MR | Zbl
[16] Hunt K. H., Kinematic geometry of mechanisms, Clarendon Press, New York, 1978 | MR | Zbl
[17] Jordan D., Steiner M., “Configuration spaces of mechanical linkages”, Discr. Comput. Geom., 22 (1999), 297-–315 | DOI | MR | Zbl
[18] Kapovich M., Millson J. J., “Universality theorems for configurations of planar linkages”, Topology., 41:6 (2002), 1051–1107 | DOI | MR | Zbl
[19] Kempe A. B., “On a general method of describing plane curves of the $n$th degree by Linkwork”, Proc. London Math. Soc., 7:102 (1876), 213–216 | MR | Zbl
[20] King H. C., Planar linkages and algebraic sets, arXiv: 9807023 [math.AG] | MR
[21] King H. C., Semiconfiguration spaces of planar linkages, arXiv: 9810130 [math.AG]
[22] King H. C., Configuration Spaces of Linkages in $R^n$, arXiv: 9811138 [math.AG]
[23] Kovalev M., “Results and problems of the geometry of hinged devices”, Proc. 12th World Congress in Mechanism and Machine Science, Besançon, France, 2007
[24] Power S., Elementary proofs of Kempe universality, arXiv: 1511.09002v2 [math.MG] | MR