On the Theory of Position Pursuit Differential Games
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the position pursuit problem described by first-order linear differential equations. Sufficient conditions of the possibility of pursuit termination for such controllable systems are obtained. For finding control values of the pursuer at each time point, values of the phase vector at discrete moments of time are allowed to use.
Mots-clés : pursuer, evader, pursuit control, evasion control, positional control.
@article{INTO_2018_144_a3,
     author = {M. Sh. Mamatov and Kh. Kh. Sobirov},
     title = {On the {Theory} of {Position} {Pursuit} {Differential} {Games}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {144},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/INTO_2018_144_a3/}
}
TY  - JOUR
AU  - M. Sh. Mamatov
AU  - Kh. Kh. Sobirov
TI  - On the Theory of Position Pursuit Differential Games
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 39
EP  - 46
VL  - 144
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/INTO_2018_144_a3/
LA  - ru
ID  - INTO_2018_144_a3
ER  - 
%0 Journal Article
%A M. Sh. Mamatov
%A Kh. Kh. Sobirov
%T On the Theory of Position Pursuit Differential Games
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 39-46
%V 144
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/INTO_2018_144_a3/
%G ru
%F INTO_2018_144_a3
M. Sh. Mamatov; Kh. Kh. Sobirov. On the Theory of Position Pursuit Differential Games. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Tome 144 (2018), pp. 39-46. https://geodesic-test.mathdoc.fr/item/INTO_2018_144_a3/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[2] Mamatov M. Sh., “K teorii differentsialnykh igr presledovaniya v sistemakh s raspredelennymi parametrami”, Avtomat. vychisl. tekhnika, 2009, no. 1, 5–14

[3] Mamatov M. Sh., “O primenenii metoda konechnykh raznostei k resheniyu zadacha presledovaniya v sistemakh s raspredelennymi parametrami”, Avtomat. telemekh., 2009, no. 8, 123–132 | Zbl

[4] Mischenko E. F., Satimov N. Yu., “Zadacha ukloneniya ot vstrechi v kriticheskom sluchae”, Differ. uravn., 19:2 (1983), 220–229 | MR

[5] Osipov Yu. S., “Pozitsionnoe upravlenie v parabolicheskikh sistemakh”, Prikl. mat. mekh., 41 (1977), 195–201

[6] Osipov Yu. S., Korotkii A. I., “Approksimatsiya v zadachakh pozitsionnogo upravleniya parabolicheskimi sistemami”, Prikl. mat. mekh., 42:4 (1978), 599–605 | MR

[7] Osipov Yu. S., Pandolfi L., Maksimov V. I., “Zadacha robastnogo granichnogo upravleniya: sluchai kraevykh uslovii Dirikhle”, Dokl. RAN, 374:3 (2000), 310–312 | MR | Zbl

[8] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb., 112:3 (1980), 307–330 | MR | Zbl

[9] Pontryagin L. S., Mischenko E. F., “Zadacha ob uklonenii ot vstrechi v lineinykh differentsialnykh igrakh”, Differ. uravn., 7:3 (1971), 436–445 | MR | Zbl

[10] Pontryagin L. S., Mischenko A. S., “Lineinaya differentsialnaya igra presledovaniya. Analiticheskaya teoriya”, Mat. sb., 131:2 (1986), 131–158

[11] Satimov N. Yu., “O zadache presledovaniya po pozitsii v differentsialnykh igrakh”, Dokl. AN SSSR, 229:4 (1976), 808–811 | MR | Zbl

[12] Satimov N. Yu., “Ob odnom sposobe ukloneniya ot vstrechi v differentsialnykh igrakh”, Mat. sb., 99:3 (1976), 380–393 | MR | Zbl

[13] Satimov N. Yu., Mamatov M. Sh., “Ob odnom klasse lineinykh differentsialnykh i diskretnykh igr mezhdu gruppami presledovatelei i ubegayuschikh”, Differ. uravn., 26:9 (1990), 1541–1551 | MR

[14] Satimov N. Yu., Tukhtasinov M., “Ob igrovykh zadachakh na fiksirovannom otrezke v upravlyaemykh evolyutsionnykh uravneniyakh pervogo poryadka”, Mat. zametki, 80:4 (2006), 613–625 | DOI

[15] Tukhtasinov M., Mamatov M. Sh., “O zadachakh perekhoda v upravlyaemykh sistemakh”, Differ. uravn., 45:3 (2009), 425–430 | MR | Zbl

[16] Tukhtasinov M., Mamatov M. Sh., “O zadachakh presledovaniya v upravlyaemykh raspredelennykh sistemakh”, Mat. zametki, 84:2 (2008), 273–280 | DOI | MR | Zbl

[17] Mamatov M. Sh., Alimov H. N., “Solution of the problem of persecution in games distributed systems of higher order”, Sib. Adv. Math., 16:2 (2013), 229–239 | Zbl

[18] Mamatov M. Sh., Alimov H. N., “By solving the problem of harassment described by differential equations of fractional order”, Proc. 7th Int. Conf. on Theoretical and Applied Sciences in the USA, New York, 2016, 6–10

[19] Mamatov M. Sh., Alimov H. N., “The pursuit problem described by differential equations of fractional order”, Proc. 6th Int. Conf. on European Applied Sciences: Challenges and Solutions, Stuttgart, 2016, 14–18

[20] Mamatov M. Sh., Durdiev D. K., Alimov H. N., “Fractional integro-differential calculation and its appendices in the theory of differential games of prosecution of the fractional order”, Am. Sci. J., 4 (2016), 72–77

[21] Mamatov M. Sh., Durdiev D. K., Alimov H. N., “On the theory of fractional order differential games of pursuit”, J. Appl. Math. Phys., 4 (2016), 1335–1362 | DOI

[22] Mamatov M. Sh., Tukhtasinov M., “Pursuit problem in distributed control systems”, Cyber. Syst. Anal., 45:2 (2009), 297–302 | DOI | MR | Zbl

[23] Mamatov M. Sh., Tashmanov E. B., Alimov H. N., “Differential games of pursing in the systems with distributed parameters and geometrical restrictions”, Am. J. Comput. Math., 3 (2013), 56–61 | DOI

[24] Mamatov M. Sh., Tashmanov E. B., Alimov H. N., “Quasilinear discrete games of pursuit described by higher-order equations”, Automat. Control Comput. Sci., 49:3 (2015), 148–152 | DOI

[25] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | MR | Zbl