On the structure of complete Kähler manifolds with nonnegative curvature near infinity.
Inventiones mathematicae, Tome 99 (1990) no. 1, p. 579.
Voir la notice de l'article dans European Digital Mathematics Library
Classification :
53C55
Mots-clés : finite topological type, harmonic function, Buseman function, geometric structure at infinity, Kähler manifold, nonnegative curvature, first homology group, first Betti number, large end
Mots-clés : finite topological type, harmonic function, Buseman function, geometric structure at infinity, Kähler manifold, nonnegative curvature, first homology group, first Betti number, large end
@article{IM_1990__99_1_143771, author = {Peter Li}, title = {On the structure of complete {K\"ahler} manifolds with nonnegative curvature near infinity.}, journal = {Inventiones mathematicae}, pages = {579}, publisher = {mathdoc}, volume = {99}, number = {1}, year = {1990}, zbl = {0695.53052}, language = {un}, url = {https://geodesic-test.mathdoc.fr/item/IM_1990__99_1_143771/} }
Peter Li. On the structure of complete Kähler manifolds with nonnegative curvature near infinity.. Inventiones mathematicae, Tome 99 (1990) no. 1, p. 579. https://geodesic-test.mathdoc.fr/item/IM_1990__99_1_143771/