Fields of Large Transcendence Degree Generated by Values of Elliptic Functions.
Inventiones mathematicae, Tome 72 (1983), p. 407.
Voir la notice de l'article dans European Digital Mathematics Library
Classification :
14H52, 13F20, 11J85, 13A15
Mots-clés : fields of large transcendence degree, algebraic independence, zero lemmas, zero estimate for group varieties, primary ideal, polynomial rings, algebraic subgroups of products of elliptic curves, effective version of Hilbert's Nullstellensatz, Kolchin theorem, Weierstrass elliptic function
Mots-clés : fields of large transcendence degree, algebraic independence, zero lemmas, zero estimate for group varieties, primary ideal, polynomial rings, algebraic subgroups of products of elliptic curves, effective version of Hilbert's Nullstellensatz, Kolchin theorem, Weierstrass elliptic function
@article{IM_1983__72_143029, author = {D.W. Masser and G. W\"ustholz}, title = {Fields of {Large} {Transcendence} {Degree} {Generated} by {Values} of {Elliptic} {Functions.}}, journal = {Inventiones mathematicae}, pages = {407}, publisher = {mathdoc}, volume = {72}, year = {1983}, zbl = {0516.10027}, language = {un}, url = {https://geodesic-test.mathdoc.fr/item/IM_1983__72_143029/} }
D.W. Masser; G. Wüstholz. Fields of Large Transcendence Degree Generated by Values of Elliptic Functions.. Inventiones mathematicae, Tome 72 (1983), p. 407. https://geodesic-test.mathdoc.fr/item/IM_1983__72_143029/