Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2025_89_1_a2, author = {M. A. Korolev}, title = {On the period of the continued fraction expansion for $\sqrt{d}$}, journal = {Izvestiya. Mathematics }, pages = {26--49}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/} }
M. A. Korolev. On the period of the continued fraction expansion for $\sqrt{d}$. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 26-49. https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/
[1] D. R. Hickerson, “Length of period simple continued fraction expansion of $\sqrt{d}$ ”, Pacific J. Math., 46:2 (1973), 429–432 | DOI | MR | Zbl
[2] F. Battistoni, L. Grenié, and G. Molteni, “The first and second moment for the length of the period of the continued fraction expansion for $\sqrt{d}$”, Mathematika, 70:4 (2024), e12273 | DOI | MR
[3] A. M. Rockett and P. Szüsz, “On the lengths of the periods of the continued fractions of square-roots of integers”, Forum Math., 2:2 (1990), 119–123 | DOI | MR | Zbl
[4] C. Hooley, “On the number of divisors of quadratic polynomials”, Acta Math., 110 (1963), 97–114 | DOI | MR | Zbl
[5] D. I. Tolev, “On the exponential sum with square-free numbers”, Bull. London Math. Soc., 37:6 (2005), 827–834 | DOI | MR | Zbl
[6] N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992 | DOI | MR | Zbl
[7] S. Bettin and V. Chandee, “Trilinear forms with Kloosterman fractions”, Adv. Math., 328 (2018), 1234–1262 | DOI | MR | Zbl