On the period of the continued fraction expansion for d
Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 26-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

If d is not a perfect square, we define T(d) as the length of the minimal period of the simple continued fraction expansion for d. Otherwise, we put T(d)=0. In the recent paper (2024), F. Battistoni, L. Grenié and G. Molteni established (in particular) an upper bound for the second moment of T(d) over the segment x. As a corollary, they derived a new upper estimate for the number of d such that T(d)>αx. In this paper, we slightly improve this result of three authors.
Mots-clés : continued fraction, period of simple continued fraction expansion, trilinear Kloosterman sums.
@article{IM2_2025_89_1_a2,
     author = {M. A. Korolev},
     title = {On the period of the continued fraction expansion for $\sqrt{d}$},
     journal = {Izvestiya. Mathematics },
     pages = {26--49},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2025},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On the period of the continued fraction expansion for $\sqrt{d}$
JO  - Izvestiya. Mathematics 
PY  - 2025
SP  - 26
EP  - 49
VL  - 89
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/
LA  - en
ID  - IM2_2025_89_1_a2
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On the period of the continued fraction expansion for $\sqrt{d}$
%J Izvestiya. Mathematics 
%D 2025
%P 26-49
%V 89
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/
%G en
%F IM2_2025_89_1_a2
M. A. Korolev. On the period of the continued fraction expansion for $\sqrt{d}$. Izvestiya. Mathematics , Tome 89 (2025) no. 1, pp. 26-49. https://geodesic-test.mathdoc.fr/item/IM2_2025_89_1_a2/

[1] D. R. Hickerson, “Length of period simple continued fraction expansion of $\sqrt{d}$ ”, Pacific J. Math., 46:2 (1973), 429–432 | DOI | MR | Zbl

[2] F. Battistoni, L. Grenié, and G. Molteni, “The first and second moment for the length of the period of the continued fraction expansion for $\sqrt{d}$”, Mathematika, 70:4 (2024), e12273 | DOI | MR

[3] A. M. Rockett and P. Szüsz, “On the lengths of the periods of the continued fractions of square-roots of integers”, Forum Math., 2:2 (1990), 119–123 | DOI | MR | Zbl

[4] C. Hooley, “On the number of divisors of quadratic polynomials”, Acta Math., 110 (1963), 97–114 | DOI | MR | Zbl

[5] D. I. Tolev, “On the exponential sum with square-free numbers”, Bull. London Math. Soc., 37:6 (2005), 827–834 | DOI | MR | Zbl

[6] N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992 | DOI | MR | Zbl

[7] S. Bettin and V. Chandee, “Trilinear forms with Kloosterman fractions”, Adv. Math., 328 (2018), 1234–1262 | DOI | MR | Zbl