Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_5_a13, author = {S. S.-T. Yau and Qiwei Zhu and Huaiqing Zuo}, title = {Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve}, journal = {Izvestiya. Mathematics }, pages = {1078--1116}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IM2_2023_87_5_a13/} }
TY - JOUR AU - S. S.-T. Yau AU - Qiwei Zhu AU - Huaiqing Zuo TI - Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve JO - Izvestiya. Mathematics PY - 2023 SP - 1078 EP - 1116 VL - 87 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IM2_2023_87_5_a13/ LA - en ID - IM2_2023_87_5_a13 ER -
%0 Journal Article %A S. S.-T. Yau %A Qiwei Zhu %A Huaiqing Zuo %T Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve %J Izvestiya. Mathematics %D 2023 %P 1078-1116 %V 87 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IM2_2023_87_5_a13/ %G en %F IM2_2023_87_5_a13
S. S.-T. Yau; Qiwei Zhu; Huaiqing Zuo. Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1078-1116. https://geodesic-test.mathdoc.fr/item/IM2_2023_87_5_a13/
[1] F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Appl. Math., 4, Marcel Dekker, New York, 1971 | MR | Zbl
[2] H. B. Laufer, Normal two-dimensional singularities, Ann. of Math. Stud., 71, Princeton Univ. Press, Princeton, NJ, 1971 | DOI | MR | Zbl
[3] W. D. Neumann, “A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves”, Trans. Amer. Math. Soc., 268:2 (1981), 299–344 | DOI | MR | Zbl
[4] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl
[5] J. Stevens, “Simple surface singularities”, Algebr. Geom., 4:2 (2017), 160–176 | DOI | MR | Zbl
[6] D. Lorenzini, “Wild quotient singularities of surfaces”, Math. Z., 275:1-2 (2013), 211–232 | DOI | MR | Zbl
[7] J. Stevens, “On the classification of rational surface singularities”, J. Singul., 7 (2013), 108–133 | DOI | MR | Zbl
[8] M. Tosun, A. Ozkan, and Z. Oer, “On the classification of rational singularities of surfaces”, Int. J. Pure Appl. Math., 41:1 (2007), 85–110 | MR | Zbl
[9] Lê Dũng Tráng and M. Tosun, “Combinatorics of rational singularities”, Comment. Math. Helv., 79:3 (2004), 582–604 | DOI | MR | Zbl
[10] H. B. Laufer, “On minimally elliptic singularities”, Amer. J. Math., 99:6 (1977), 1257–1295 | DOI | MR | Zbl
[11] S. Ishii, “On isolated Gorenstein singularities”, Math. Ann., 270:4 (1985), 541–554 | DOI | MR | Zbl
[12] K. Konno, “On the Yau cycle of a normal surface singularity”, Asian. J. Math., 16:2 (2012), 279–298 | DOI | MR | Zbl
[13] K. Konno, “Certain normal surface singularities of general type”, Methods Appl. Anal., 24:1 (2017), 71–97 | DOI | MR | Zbl
[14] K. Konno and D. Nagashima, “Maximal ideal cycles over normal surface singularities of Brieskorn type”, Osaka J. Math., 49:1 (2012), 225–245 | MR | Zbl
[15] A. Némethi, “ “Weakly” elliptic Gorenstein singularities of surfaces”, Invent. Math., 137:1 (1999), 145–167 | DOI | MR | Zbl
[16] T. Tomaru, “On Gorenstein surface singularities with fundamental genus $p_f\geq 2$ which satisfy some minimality conditions”, Pacific J. Math., 170:1 (1995), 271–295 | DOI | MR | Zbl
[17] P. Wagreich, “Elliptic singularities of surfaces”, Amer. J. Math., 92:2 (1970), 419–454 | DOI | MR | Zbl
[18] S. S.-T. Yau, “On maximally elliptic singularities”, Trans. Amer. Math. Soc., 257:2 (1980), 269–329 | DOI | MR | Zbl
[19] S. S.-T. Yau, Mingyi Zhang, and Huaiqing Zuo, “Topological classification of simplest Gorenstein non-complete intersection singularities of dimension 2”, Asian J. Math., 19:4 (2015), 651–792 | DOI | MR | Zbl
[20] Fan Chung, Yi-Jing Xu, and S. S.-T. Yau, “Classification of weighted dual graphs with only complete intersection singularities structures”, Trans. Amer. Math. Soc., 361:7 (2009), 3535–3596 | DOI | MR | Zbl
[21] G. Müller, “Symmetries of surface singularities”, J. London Math. Soc. (2), 59:2 (1999), 491–506 | DOI | MR | Zbl
[22] J.-P. Serre, Groupes algébriques et corps de classes, Actualités Sci. Indust., 1264, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959 | MR | Zbl
[23] H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608 | DOI | MR | Zbl
[24] H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368 | DOI | MR | Zbl
[25] T. Okuma, “The geometric genus of splice quotient singularities”, Trans. Amer. Math. Soc., 360:12 (2008), 6643–6659 | DOI | MR | Zbl
[26] W. D. Neumann and J. Wahl, “Complete intersection singularities of splice type as universal abelian covers”, Geom. Topol., 9 (2005), 699–755 | DOI | MR | Zbl
[27] M. Tomari, “Maximal-ideal-adic filtration on $R^1\psi_*\mathscr O_{\tilde{V}}$ for normal two-dimensional singularities”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, 633–647 | DOI | MR | Zbl
[28] J. Nagy and A. Némethi, “The Abel map for surface singularities II. Generic analytic structure”, Adv. Math., 371 (2020), 107268 | DOI | MR | Zbl