The geometry of polynomial identities
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 910-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we stress the role of invariant theory and in particular the role of varieties of semisimple representations in the theory of polynomial identities of an associative algebra. In particular, using this tool, we show that two PI-equivalent finite-dimensional fundamental algebras (see Definition 2.19) have the same semisimple part. Moreover, we carry out some explicit computations of codimensions and cocharacters, extending work of Berele [8] and Kanel-Belov [6], [7].
Mots-clés : polynomial identities, fundamental algebras, invariant theory.
@article{IM2_2016_80_5_a5,
     author = {C. Procesi},
     title = {The geometry of polynomial identities},
     journal = {Izvestiya. Mathematics },
     pages = {910--953},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/}
}
TY  - JOUR
AU  - C. Procesi
TI  - The geometry of polynomial identities
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 910
EP  - 953
VL  - 80
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/
LA  - en
ID  - IM2_2016_80_5_a5
ER  - 
%0 Journal Article
%A C. Procesi
%T The geometry of polynomial identities
%J Izvestiya. Mathematics 
%D 2016
%P 910-953
%V 80
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/
%G en
%F IM2_2016_80_5_a5
C. Procesi. The geometry of polynomial identities. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 910-953. https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/

[1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., 24, Amer. Math. Soc., New York, 1939, xi+210 pp. | MR | Zbl

[2] E. Aljadeff, A. Giambruno, C. Procesi, A. Regev, Rings with polynomial identities and finite dimensional representations of algebras, book in preparation

[3] E. Aljadeff, A. Kanel-Belov, Y. Karasik, “Kemer's theorem for affine $\mathrm{PI}$ algebras over a field of characteristic zero”, J. Pure Appl. Algebra, 220:8 (2016), 2771–2808 | DOI | MR | Zbl

[4] S. A. Amitsur, “A noncommutative Hilbert basis theorem and subrings of matrices”, Trans. Amer. Math. Soc., 149 (1970), 133–142 | DOI | MR | Zbl

[5] M. Artin, “On Azumaya algebras and finite-dimensional representations of rings”, J. Algebra, 11:4 (1969), 532–563 | DOI | MR | Zbl

[6] A. Ya. Belov, “On the rationality of Hilbert series of relatively free algebras”, Russian Math. Surveys, 52:2 (1997), 394–395 | DOI | DOI | MR | Zbl

[7] A. Ya. Belov, “The Gel'fand–Kirillov dimension of relatively free associative algebras”, Sb. Math., 195:12 (2004), 1703–1726 | DOI | DOI | MR | Zbl

[8] A. Berele, “Applications of Belov's theorem to the cocharacter sequence of p.i. algebras”, J. Algebra, 298:1 (2006), 208–214 | DOI | MR | Zbl

[9] G. M. Bergman, J. Lewin, “The semigroup of ideals of a fir is (usually) free”, J. London Math. Soc. (2), 11:1 (1975), 21–31 | DOI | MR | Zbl

[10] W. Borho, H. Kraft, “Über die Gelfand–Kirillov-dimension”, Math. Ann., 220:1 (1976), 1–24 | DOI | MR | Zbl

[11] C. De Concini, C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Universitext, Springer, New York, 2010, xx+384 pp. | DOI | MR | Zbl

[12] C. De Concini, C. Procesi, Invariant theory of matrices, book in preparation

[13] S. Donkin, “Invariants of several matrices”, Invent. Math., 110:2 (1992), 389–401 | DOI | MR | Zbl

[14] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl

[15] V. Drensky, E. Formanek, Polynomial identity rings, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2004, viii+200 pp. | DOI | MR | Zbl

[16] I. M. Gel'fand, A. A. Kirillov, “Fields associated with enveloping algebras of Lie algebras”, Soviet Math. Dokl., 7 (1966), 407–409 | MR | Zbl

[17] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[18] A. Giambruno, M. Zaicev, “Minimal varieties of exponential growth”, Adv. Math., 174:2 (2003), 310–323 | DOI | MR | Zbl

[19] A. R. Kemer, Ideals of identities of associative algebras, Transl. Math. Monogr., 87, Amer. Math. Soc., Providence RI, 1991, vi+81 pp. | MR | Zbl

[20] V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535 | DOI | MR | Zbl

[21] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl

[22] C. Procesi, “The invariant theory of $n\times n$-matrices”, Advances in Math., 19:3 (1976), 300–381 | DOI | MR | Zbl

[23] C. Procesi, “Computing with $2\times 2$ matrices”, J. Algebra, 87:2 (1984), 342–359 | DOI | MR | Zbl

[24] C. Procesi, “A formal inverse to the Cayley–Hamilton theorem”, J. Algebra, 107:1 (1987), 63–74 | DOI | MR | Zbl

[25] C. Procesi, Lie groups. An approach through invariants and representations, Universitext, Springer, New York, NY, 2007, xxiv+596 pp. | DOI | MR | Zbl

[26] Yu. P. Razmyslov, “Trace identities of full matrix algebras over a field of characteristic zero”, Math. USSR Izv., 8:4 (1974), 724–760 | DOI | MR | Zbl

[27] Yu. P. Razmyslov, Identities of algebras and their representations, Transl. Math. Monogr., 138, Amer. Math. Soc., Providence, RI, 1994, xiv+318 pp. | MR | MR | Zbl | Zbl

[28] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11:2 (1972), 131–152 | DOI | MR | Zbl

[29] A. Regev, Growth for algebras satisfying polynomial identities, preprint, 2014

[30] N. Roby, “Lois polynômes et lois formelles en théorie des modules”, Ann. Sci. École Norm. Sup. (3), 80 (1963), 213–348 | MR | Zbl

[31] N. Roby, “Lois polynômes multiplicatives universelles”, C. R. Acad. Sci. Paris Sér. A-B, 290:19 (1980), A869–A871 | MR | Zbl

[32] L. H. Rowen, Polynomial identities in ring theory, Pure Appl. Math., 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xx+365 pp. | MR | Zbl

[33] A. I. Shirshov, “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43(85):2 (1957), 277–283 | MR | Zbl

[34] F. Vaccarino, “Generalized symmetric functions and invariants of matrices”, Math. Z., 260:3 (2008), 509–526 | DOI | MR | Zbl

[35] D. Ziplies, “Abelianizing the divided powers algebra of an algebra”, J. Algebra, 122:2 (1989), 261–274 | DOI | MR | Zbl

[36] A. N. Zubkov, “A generalization of the Razmyslov–Procesi theorem”, Algebra and Logic, 35:4 (1996), 241–254 | DOI | MR | Zbl

[37] K. A. Zubrilin, “On the largest nilpotent ideal in algebras that satisfy Capelli identities”, Sb. Math., 188:8 (1997), 1203–1211 | DOI | DOI | MR | Zbl