Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_5_a5, author = {C. Procesi}, title = {The geometry of polynomial identities}, journal = {Izvestiya. Mathematics }, pages = {910--953}, publisher = {mathdoc}, volume = {80}, number = {5}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/} }
C. Procesi. The geometry of polynomial identities. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 910-953. https://geodesic-test.mathdoc.fr/item/IM2_2016_80_5_a5/
[1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., 24, Amer. Math. Soc., New York, 1939, xi+210 pp. | MR | Zbl
[2] E. Aljadeff, A. Giambruno, C. Procesi, A. Regev, Rings with polynomial identities and finite dimensional representations of algebras, book in preparation
[3] E. Aljadeff, A. Kanel-Belov, Y. Karasik, “Kemer's theorem for affine $\mathrm{PI}$ algebras over a field of characteristic zero”, J. Pure Appl. Algebra, 220:8 (2016), 2771–2808 | DOI | MR | Zbl
[4] S. A. Amitsur, “A noncommutative Hilbert basis theorem and subrings of matrices”, Trans. Amer. Math. Soc., 149 (1970), 133–142 | DOI | MR | Zbl
[5] M. Artin, “On Azumaya algebras and finite-dimensional representations of rings”, J. Algebra, 11:4 (1969), 532–563 | DOI | MR | Zbl
[6] A. Ya. Belov, “On the rationality of Hilbert series of relatively free algebras”, Russian Math. Surveys, 52:2 (1997), 394–395 | DOI | DOI | MR | Zbl
[7] A. Ya. Belov, “The Gel'fand–Kirillov dimension of relatively free associative algebras”, Sb. Math., 195:12 (2004), 1703–1726 | DOI | DOI | MR | Zbl
[8] A. Berele, “Applications of Belov's theorem to the cocharacter sequence of p.i. algebras”, J. Algebra, 298:1 (2006), 208–214 | DOI | MR | Zbl
[9] G. M. Bergman, J. Lewin, “The semigroup of ideals of a fir is (usually) free”, J. London Math. Soc. (2), 11:1 (1975), 21–31 | DOI | MR | Zbl
[10] W. Borho, H. Kraft, “Über die Gelfand–Kirillov-dimension”, Math. Ann., 220:1 (1976), 1–24 | DOI | MR | Zbl
[11] C. De Concini, C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Universitext, Springer, New York, 2010, xx+384 pp. | DOI | MR | Zbl
[12] C. De Concini, C. Procesi, Invariant theory of matrices, book in preparation
[13] S. Donkin, “Invariants of several matrices”, Invent. Math., 110:2 (1992), 389–401 | DOI | MR | Zbl
[14] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl
[15] V. Drensky, E. Formanek, Polynomial identity rings, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2004, viii+200 pp. | DOI | MR | Zbl
[16] I. M. Gel'fand, A. A. Kirillov, “Fields associated with enveloping algebras of Lie algebras”, Soviet Math. Dokl., 7 (1966), 407–409 | MR | Zbl
[17] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl
[18] A. Giambruno, M. Zaicev, “Minimal varieties of exponential growth”, Adv. Math., 174:2 (2003), 310–323 | DOI | MR | Zbl
[19] A. R. Kemer, Ideals of identities of associative algebras, Transl. Math. Monogr., 87, Amer. Math. Soc., Providence RI, 1991, vi+81 pp. | MR | Zbl
[20] V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535 | DOI | MR | Zbl
[21] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl
[22] C. Procesi, “The invariant theory of $n\times n$-matrices”, Advances in Math., 19:3 (1976), 300–381 | DOI | MR | Zbl
[23] C. Procesi, “Computing with $2\times 2$ matrices”, J. Algebra, 87:2 (1984), 342–359 | DOI | MR | Zbl
[24] C. Procesi, “A formal inverse to the Cayley–Hamilton theorem”, J. Algebra, 107:1 (1987), 63–74 | DOI | MR | Zbl
[25] C. Procesi, Lie groups. An approach through invariants and representations, Universitext, Springer, New York, NY, 2007, xxiv+596 pp. | DOI | MR | Zbl
[26] Yu. P. Razmyslov, “Trace identities of full matrix algebras over a field of characteristic zero”, Math. USSR Izv., 8:4 (1974), 724–760 | DOI | MR | Zbl
[27] Yu. P. Razmyslov, Identities of algebras and their representations, Transl. Math. Monogr., 138, Amer. Math. Soc., Providence, RI, 1994, xiv+318 pp. | MR | MR | Zbl | Zbl
[28] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11:2 (1972), 131–152 | DOI | MR | Zbl
[29] A. Regev, Growth for algebras satisfying polynomial identities, preprint, 2014
[30] N. Roby, “Lois polynômes et lois formelles en théorie des modules”, Ann. Sci. École Norm. Sup. (3), 80 (1963), 213–348 | MR | Zbl
[31] N. Roby, “Lois polynômes multiplicatives universelles”, C. R. Acad. Sci. Paris Sér. A-B, 290:19 (1980), A869–A871 | MR | Zbl
[32] L. H. Rowen, Polynomial identities in ring theory, Pure Appl. Math., 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xx+365 pp. | MR | Zbl
[33] A. I. Shirshov, “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43(85):2 (1957), 277–283 | MR | Zbl
[34] F. Vaccarino, “Generalized symmetric functions and invariants of matrices”, Math. Z., 260:3 (2008), 509–526 | DOI | MR | Zbl
[35] D. Ziplies, “Abelianizing the divided powers algebra of an algebra”, J. Algebra, 122:2 (1989), 261–274 | DOI | MR | Zbl
[36] A. N. Zubkov, “A generalization of the Razmyslov–Procesi theorem”, Algebra and Logic, 35:4 (1996), 241–254 | DOI | MR | Zbl
[37] K. A. Zubrilin, “On the largest nilpotent ideal in algebras that satisfy Capelli identities”, Sb. Math., 188:8 (1997), 1203–1211 | DOI | DOI | MR | Zbl