Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_3_a3, author = {V. N. Kokarev}, title = {Mixed volume forms and a complex equation of {Monge--Amp\`ere} type on {K\"ahler} manifolds of positive curvature}, journal = {Izvestiya. Mathematics }, pages = {501--514}, publisher = {mathdoc}, volume = {74}, number = {3}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IM2_2010_74_3_a3/} }
TY - JOUR AU - V. N. Kokarev TI - Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature JO - Izvestiya. Mathematics PY - 2010 SP - 501 EP - 514 VL - 74 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IM2_2010_74_3_a3/ LA - en ID - IM2_2010_74_3_a3 ER -
%0 Journal Article %A V. N. Kokarev %T Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature %J Izvestiya. Mathematics %D 2010 %P 501-514 %V 74 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IM2_2010_74_3_a3/ %G en %F IM2_2010_74_3_a3
V. N. Kokarev. Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 501-514. https://geodesic-test.mathdoc.fr/item/IM2_2010_74_3_a3/
[1] A. V. Pogorelov, The Minkowski multidimensional problem, Wiley, New York–Toronto–London, 1978 | MR | MR | Zbl
[2] A. V. Pogorelov, Mnogomernoe uravnenie Monzha–Ampera $\det(z_{ij})=\varphi(z_1,\dots\allowbreak\dots,z_n,z,x_1,\dots,x_n)$, Nauka, M., 1988 | MR | Zbl
[3] Sh.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampére equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl
[4] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3(45):2 (1938), 227–251 | Zbl
[5] N. M. Ivochkina, “Solution of the Dirichlet problem for curvature equations of order $m$”, Math. USSR-Sb., 67:2 (1990), 317–339 | DOI | MR | Zbl
[6] V. N. Kokarev, “Otsenka glavnykh radiusov krivizny zamknutoi vypukloi giperpoverkhnosti v $E^{n+1}$ po vtoroi elementarnoi simmetricheskoi funktsii ee uslovnykh radiusov krivizny”, Ukr. geom. sb., 23 (1980), 65–74 | MR | Zbl
[7] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl
[8] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[9] A. I. Mal'cev, Foundations of linear algebra, Freeman, San Francisco–London, 1963 | MR | MR | Zbl
[10] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, Intersci. Publ., New York–London–Sydney, 1963 | MR | MR | MR | MR | Zbl | Zbl
[11] L. Bers, F. John, M. Schechter, Partial differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[12] C. Miranda, Partial differential equations of elliptic type, Ergeb. Math. Grenzgeb., 2, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl
[13] E. M. Landis, Second order equations of elliptic and parabolic type, Transl. Math. Monogr., 171, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl
[14] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl | Zbl