Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1147-1170.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions sufficient for the absence of global solutions of semilinear hyperbolic inequalities and systems in conic domains of the Euclidean space RN. We consider a model problem in a cone K: that given by the inequality $$ \dfrac{\partial^2u}{\partial t^2}-\Delta u\geqslant |u|^q, \qquad (x,t)\in K\times(0,\infty), $$ The proof is based on the test-function method developed by Veron, Mitidieri, Pokhozhaev, and Tesei.
@article{IM2_2002_66_6_a3,
     author = {G. G. Laptev},
     title = {Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains},
     journal = {Izvestiya. Mathematics },
     pages = {1147--1170},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_2002_66_6_a3/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1147
EP  - 1170
VL  - 66
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_2002_66_6_a3/
LA  - en
ID  - IM2_2002_66_6_a3
ER  - 
%0 Journal Article
%A G. G. Laptev
%T Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains
%J Izvestiya. Mathematics 
%D 2002
%P 1147-1170
%V 66
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_2002_66_6_a3/
%G en
%F IM2_2002_66_6_a3
G. G. Laptev. Absence of solutions of differential inequalities and systems of hyperbolic type in conic domains. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1147-1170. https://geodesic-test.mathdoc.fr/item/IM2_2002_66_6_a3/

[1] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[2] Alinhac S., Blow-up for nonlinear hyperbolic equations, Boston, Birkhäuser, 1995 | Zbl

[3] Georgiev V., Linblad H., Sogge C., “Weighted Strichartz estimate and global existence for semilinear wave equation”, Amer. J. Math., 119 (1997), 1291–1319 | DOI | MR | Zbl

[4] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Math. Preprint Univ. of Bath 00/10, 2000

[5] Konkov A. A., “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. matem., 63:2 (1999), 41–127 | MR

[6] Deng K., Levine H. A., “The role of critical exponent in blow-up theorem: the sequel”, J. Math. Anal. Appl., 243 (2000), 85–126 | DOI | MR | Zbl

[7] John F., “Blow-up of solutions of nonlinear wave equation in three space dimensions”, Manuscripta Math., 28 (1979), 235–268 | DOI | MR | Zbl

[8] Schaeffer J., “The equation $u_{tt}-\Delta u=|u|^p$ for the critical value of $p$”, Proc. Roy. Soc. Edinburgh A, 101 (1985), 31–44 | MR | Zbl

[9] Sideris T., “Nonexistence of global solutions to semilinear wave equations in high dimensions”, J. Diff. Equations, 52 (1984), 378–406 | DOI | MR | Zbl

[10] Del Santo D., Georgiev V., Mitidieri E., “Global existence of the solutions and formation of singularities for a class of hyperbolic systems”, Progress in Nonlinear Diff. Equations and Their Applications, 32, Birkhäuser, Boston, 1997, 117–140 | MR | Zbl

[11] Del Santo D., Mitidieri E., “Otsutstvie reshenii giperbolicheskoi sistemy: kriticheskii sluchai”, Differents. uravn., 34:9 (1998), 1157–1163 | MR | Zbl

[12] Kato T., “Blow-up of solutions of some nonlinear hyperbolic equations”, Comm. Pure. Appl. Math., 33 (1980), 501–505 | DOI | MR | Zbl

[13] Veron L., Pohozaev S. I., “Blow-up results for nonlinear hyperbolic inequalities”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:2 (2000), 393–420 | MR | Zbl

[14] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. ...dokt. fiz.-mat. nauk, MIAN, M., 1994

[15] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Tr. MIAN, 227, Nauka, M., 1999, 192–222 | MR | Zbl

[16] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001 | MR

[17] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, Nauka, M., 2001, 223–235 | MR | Zbl

[18] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16 (1967), 209–292 | MR | Zbl

[19] Nguen Man Khung, “Asimptotika reshenii pervoi kraevoi zadachi dlya silno giperbolicheskikh sistem vblizi konicheskoi tochki granitsy oblasti”, Matem. sb., 190:7 (2000), 103–126

[20] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[21] Zhang Q., “Blow-up results for nonlinear parabolic equations on manifolds”, Duke Math. J., 97:3 (1999), 515–539 | DOI | MR | Zbl

[22] Laptev G. G., “Otsutstvie globalnykh polozhitelnykh reshenii sistem polulineinykh ellipticheskikh neravenstv v konusakh”, Izv. RAN. Ser. matem., 64:6 (2000), 107–124 | MR | Zbl

[23] Levine H. A., “The role of critical exponents in blow-up theorems”, SIAM Reviews, 32 (1990), 371–386 | MR