Extremal functions of integral functionals in~Hω[a,b]
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 425-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a solution of the discrete and continuous versions of the problem $$ \int_a^bh(t)\psi(t)\,dt\to\sup, \quad h\in H^\omega[a,b]\colon\quad h(a)=E_1, \quad h(b)=E_2, $$ where Hω[a,b] is the class of absolutely continuous functions on [a,b] with common majorizing modulus of continuity ω. We also discuss applications of the results obtained to mathematical economics (the Kantorovich–Monge mass transfer problem), approximation theory and numerical differentiation (Chebyshev ω-polynomials and splines), the constructive theory of functions (inequalities for ω-rearrangements), graph theory (graphs of rearrangements), and optimal control theory (the theory of total control and the Fel'dbaum–Bushaw problem).
@article{IM2_1999_63_3_a0,
     author = {S. K. Bagdasarov},
     title = {Extremal functions of integral functionals in~$H^\omega[a,b]$},
     journal = {Izvestiya. Mathematics },
     pages = {425--480},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_1999_63_3_a0/}
}
TY  - JOUR
AU  - S. K. Bagdasarov
TI  - Extremal functions of integral functionals in~$H^\omega[a,b]$
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 425
EP  - 480
VL  - 63
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_1999_63_3_a0/
LA  - en
ID  - IM2_1999_63_3_a0
ER  - 
%0 Journal Article
%A S. K. Bagdasarov
%T Extremal functions of integral functionals in~$H^\omega[a,b]$
%J Izvestiya. Mathematics 
%D 1999
%P 425-480
%V 63
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_1999_63_3_a0/
%G en
%F IM2_1999_63_3_a0
S. K. Bagdasarov. Extremal functions of integral functionals in~$H^\omega[a,b]$. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 425-480. https://geodesic-test.mathdoc.fr/item/IM2_1999_63_3_a0/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[2] Bagdasarov S. K., “Maksimizatsiya funktsionalov v $H^{\omega }[a,b]$”, Matem. sb., 189:2 (1998), 3–72 | MR | Zbl

[3] Bagdasarov S. K., “Obschaya konstruktsiya chebyshevskikh $\omega$-splainov dannoi normy”, Algebra i analiz, 10:6 (1998), 93–134 | MR | Zbl

[4] Bagdasarov S. K., “Svoistva $\omega$-perestanovok”, Funkts. analiz i ego pril., 33:3 (1999), 1–20 | MR | Zbl

[5] Bagdasarov S. K., “Elementarnoe reshenie zadachi Feldbauma–Bushou”, Matem. zametki, 1999 (to appear)

[6] Bagdasarov S. K., “Zadacha Feldbauma–Bushou, integralnyi printsip maksimuma i vvedenie v totalnyi kontrol”, Matem. sb., 1999 (to appear)

[7] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[8] Gabushin V. N., “Neravenstva dlya norm funktsii i ee proizvodnoi v metrikakh $L_p$”, Matem. zametki, 1:3 (1967), 291–298 | MR | Zbl

[9] Galeev E. M., Tikhomirov V. M., Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989 | Zbl

[10] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo TGU, Tbilisi, 1975 | MR

[11] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl

[12] Zolotarev E. I., “Prilozheniya ellipticheskikh funktsii k zadache o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya”, Zap. S.-Pb. Ak. nauk, 30:5 (1877), 1–59 ; Избранные труды, Т. II, Изд-во АН СССР, Л., 1932 | MR

[13] Kantorovich L. V., “O peremeschenii mass”, DAN SSSR, 37 (1942), 227–229

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[15] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, DAN SSSR, 115 (1957), 1058–1061 | MR | Zbl

[16] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh funktsii na beskonechnykh intervalakh”, Uch. zap. MGU. Matematika, 3 (1939), 3–16

[17] Kolmogorov A. N., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985 | MR

[18] Korneichuk N. P., “Ekstremalnye znacheniya funktsionalov i nailuchshee priblizhenie na klassakh periodicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 93–124 | MR | Zbl

[19] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[20] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[21] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1990 | MR

[22] Korneichuk N. P., “S. M. Nikolskii i razvitie issledovanii po teorii priblizheniya v SSSR”, UMN, 40 (1985), 83–156

[23] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[24] Magaril-Ilyaev G. G., “O kolmogorovskikh neravenstvakh na polupryamoi”, Vest. MGU. Ser. matem., 31:5 (1976), 33–41 | MR | Zbl

[25] Magaril-Ilyaev G. G., “Neravenstva dlya proizvodnykh i dvoistvennost”, Tr. MIAN, 161, Nauka, M., 1983, 183–194 | MR

[26] Malozemov V. N., Pevnyi A. B., Polinomialnye splainy, Izd-vo LGU, L., 1986 | MR | Zbl

[27] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[28] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolyatsii differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 9 (1969), 277–289

[29] Feldbaum A. A., “O sinteze optimalnykh sistem s pomoschyu fazovogo prostranstva”, Avtomatika i telemekhanika, 16 (1955), 129–149 | MR

[30] Chebyshev P. L., Izbrannye trudy, Izd-vo AN SSSR, M., 1955

[31] Bagdasarov S. K., Chebyshev Splines and Kolmogorov Inequalities, Birkhäuser, Basel, 1998 | MR | Zbl

[32] Bagdasarov S. K., “Zolotarev $\omega $-polynomials in $W^rH^{\omega }[0,1]$”, J. Approx. Theory, 90:3 (1997), 340–378 | DOI | MR | Zbl

[33] Bagdasarov S. K., “Kolmogorov problem in $W^rH^{\omega }[0,1]$ and extremal Zolotarev $\omega $-splines”, Dissertationes Mathematicae, 502 (1998)

[34] Bagdasarov S. K., General time optimal linear problem and integral maximum principle, in preparation, 1998

[35] Bagdasarov S. K., Kolmogorov problem for intermediate derivatives and optimal control, in preparation

[36] Bellman R. E., Dynamic Programming, Princeton Univ. Press, Princeton–N.J., 1957 | MR

[37] Bellman R., Glicksberg I., Gross O., “On the Bang-Bang control problem”, Quart. Appl. Math., 14 (1956), 11–18 | MR | Zbl

[38] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Inc., N. Y., 1988 | MR

[39] Bushaw D., “Optimal discontinuous forcing terms”, Theory of Nonlinear Oscillations, 4, Princeton Univ. Press, Princeton–N. J., 1958, 29–52 | MR

[40] Cavaretta A. S., Schoenberg I. J., “Solution of Landau's problem concerning higher derivatives on the half-line”, Proc. of the Intern. Conf. on Constructive Function Theory, Publ. House Bulg. Acad. Sci., Sofia, 1972, 297–308 | MR

[41] Chong K. M., “Some extensions of a theorem of Hardy, Littlewood and Polya and their applications”, Can. J .Math., 26 (1974), 1321–1340 | MR | Zbl

[42] DeVore R. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin–Heidelberg, 1993 | MR

[43] Dorfman R., Samuelson P. A., Solow R. M., Linear Programming and Economic Analysis, Dover Publications, Inc., N.Y., 1986 | MR

[44] Fuller A. T., “Optimization of nonlinear control systems with transient inputs”, J. of Electron. and Control, 8:6 (1960), 465–479 | MR

[45] Hadamard J., “Sur le module maximum d'une fonction et de ses dérivées”, Soc. math. France. Comptes rendus, des Séances, 41 (1914), 68–72

[46] Hardy G. H., Littlewood J., Pölya G., Inequalities, Cambridge Univ. Press, N.Y., 1934 | Zbl

[47] Hermes H., LaSalle J. P., Functional Analysis and Optimal Control, Academic Press, N.Y.–London, 1969 | MR | Zbl

[48] Hitchcock F. L., “The distribution of a product from several sources to numerous localities”, J. of Mathematics and Physics, 20 (1941), 224–230 | MR | Zbl

[49] Jackson D., Über die Genauigkett des Annäherung stetigen Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrischen Summen gegebener Ordnung, Diss., Göttingen, 1911

[50] Karlin S., “Oscillatory perfect splines and related extremal problems”, Studies in Spline Functions and Approximation Theory, eds. S. Karlin, C. A. Micchelli, A. Pinkus, I. J. Schoenberg, Academic Press, N.Y., 1976, 371–460 | MR

[51] Landau E., “Einige Ungleichingen für zweimal differentierbare Funktionen”, Proc. London Math. Soc., 13 (1913), 43–49 | DOI | Zbl

[52] Levin V. L., “General Monge–Kantorovich problem and its applications in measure theory and mathematical economics”, Functional Analysis, Optimization and Mathematical Economics, Oxford Univ. Press, N.Y., 1990, 141–176 | MR | Zbl

[53] Lorentz G. G., “An inequality for rearrangements”, Amer. Math. Monthly, 60 (1953), 176–179 | DOI | MR | Zbl

[54] Lorentz G. G., Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953 | MR | Zbl

[55] Lorentz G. G., von Golitschek M., Makovoz Yu., Constructive Approximation. Advanced Problems, Springer, Berlin, 1996 | MR

[56] McCann R., Exact solutions to the transportation problem on the line, Preprint, 1998 | MR

[57] Monge G., “Memoire sur la theorie des deblais et des remblais”, Mem. Acad. Sci. Paris, 1781

[58] Muirhead R. F., “Some methods applicable to identities and inequalities of symmetric algebraic functions of $n$ letters”, Proc. Edinburgh Math. Soc., 21 (1903), 144–157 | DOI

[59] Nikol'skii S. M., “La série de Fourier d'une fonction dont be module de continuité est donné”, Dokl. Akad. Nauk SSSR, 52 (1946), 191–194 | MR

[60] Papadimitriou C. H., Steiglitz K., Combinatorial Optimization: algorithms and complexity, Prentice Hall, Englewood Cliffs, N. J., 1982 | MR | Zbl

[61] Pinkus A., “Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval”, J. of Approximation Theory, 23:2 (1978), 37–64 | DOI | MR | Zbl

[62] Schrijver A., Theory of Linear and Integer Programming, V. 2, John Wiley Sons, N.Y., 1986 | MR | Zbl