The Kaplan extension of the ring and Banach algebra of continuous functions as a~divisible hull
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 477-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new algebraic structure of c-rings and c-algebras with a refinement is introduced, and on its basis the concept of a divisible hull of graduated type. These concepts are used to obtain a ring and Banach algebra characterization of the universally measurable extension CUM as a certain type of divisible hull of the ring and Banach algebra C of all bounded continuous functions on an Aleksandrov space (Theorem 1). For purposes of comparison a description of the Arens second dual extension CC is given without proof (Theorem 2).
@article{IM2_1995_45_3_a1,
     author = {V. K. Zakharov},
     title = {The {Kaplan} extension of the ring and {Banach} algebra of continuous functions as a~divisible hull},
     journal = {Izvestiya. Mathematics },
     pages = {477--493},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_1995_45_3_a1/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - The Kaplan extension of the ring and Banach algebra of continuous functions as a~divisible hull
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 477
EP  - 493
VL  - 45
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_1995_45_3_a1/
LA  - en
ID  - IM2_1995_45_3_a1
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T The Kaplan extension of the ring and Banach algebra of continuous functions as a~divisible hull
%J Izvestiya. Mathematics 
%D 1995
%P 477-493
%V 45
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_1995_45_3_a1/
%G en
%F IM2_1995_45_3_a1
V. K. Zakharov. The Kaplan extension of the ring and Banach algebra of continuous functions as a~divisible hull. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 477-493. https://geodesic-test.mathdoc.fr/item/IM2_1995_45_3_a1/

[1] K. Kuratovskii, Topologiya, t. 1, Mir, M., 1966 | MR

[2] Z. Semadeni, Banach spaces of continuous functions, Warszawa Polish Sci. Publ., 1971 | MR | Zbl

[3] N. Burbaki, Integrirovanie, gl. III-V, Nauka, M., 1977

[4] R. F. Arens, “Operations induced in function classes”, Monatsh. Math., 55:1 (1951), 1–19 | DOI | MR | Zbl

[5] N. J. Fine, L. Gillman, J. Lambek, Rings of quotients of rings of functions, Mc Gill Univ. Press, Montreal, 1965 | MR

[6] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[7] V. K. Zakharov, “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schetno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, UMN, 35:4 (1980), 187–188 | MR | Zbl

[8] F. Dashiell, A. Hager, M. Henriksen, “Order–Cauchy completions of rings and vector lattices of continuous functions”, Can. J. Math., 32:3 (1980), 657–685 | MR | Zbl

[9] K. Feis, Algebra: koltsa, moduli i kategorii, Mir, M., 1977

[10] S. Kaplan, The bidual of $C(X)$, North-Holland Publ. Comp., Amsterdam, 1985 | MR | Zbl

[11] V. K. Zakharov, “$cr$-obolochki koltsa nepreryvnykh funktsii”, DAN SSSR, 249:3 (1987), 531–534

[12] V. K. Zakharov, “Svyaz mezhdu polnym koltsom chastnykh koltsa nepreryvnykh funktsii, regulyarnym popolneniem i rasshireniyami Khausdorfa–Serpinskogo”, UMN, 45:6 (1990), 133–134 | MR | Zbl

[13] V. K. Zakharov, “Universalno izmerimoe rasshirenie i rasshirenie Arensa banakhovoi algebry nepreryvnykh funktsii”, Funkts. analiz i ego prilozh., 24:2 (1990), 83–84 | MR | Zbl

[14] V. K. Zakharov, “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschimi im proobrazami”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 928–956 | Zbl

[15] A. D. Aleksandrov, “Additive functions in abstract spaces I-III”, Matem. sb., 8 (1940), 303–348 ; 9 (1941), 563–628 ; 13 (1943), 169–238

[16] V. K. Zaharov, “Some perfect preimages connected with extensions of the family of continuous functions”, Topology theory and applications, Coll. Math. Soc. Janos Bolyai, 41, Eger (Hungary), 1983, 703–728 | MR

[17] V. K. Zakharov, “Topologicheskie proobrazy, sootvetstvuyuschie klassicheskim rasshireniyam koltsa nepreryvnykh funktsii”, Vestn. mosk. un-ta, 1990, no. 1, 44–47, Ser. 1 | Zbl

[18] V. K. Zaharov, “Lebesque cover and Lebesquean oxtension”, Studia Sci. Math. Hung., 23 (1988), 343–368 | MR | Zbl

[19] V. K. Zaharov, “Hyperstonean cover and second dual extension”, Acta Math. Hung., 51:1-2 (1988), 125–149 | DOI | MR

[20] J.-P. Delfosse, “Caractérizations d'anneaux de fonctions continues”, Ann. Soc. Sci. Bruxelles Ser. I, 89:3 (1975), 364–368 | MR | Zbl

[21] I. M. Gel'fand, “Normierte ringe”, Matem. sb., 9 (1941), 3–24 | MR | Zbl

[22] J. L. Kelley, “Measures in Boolean algebras”, Pacif. J. Math., 9:4 (1959), 1165–1177 | MR | Zbl

[23] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[24] V. K. Zakharov, “Delimost na schetno-plotnye idealy i schetnaya ortopolnota modulei”, Matem. zametki, 30:4 (1981), 481–496 | Zbl