Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1990_35_3_a4, author = {A. I. Degtyarev}, title = {Classification of surfaces of degree four having a~nonsimple singular point}, journal = {Izvestiya. Mathematics }, pages = {607--627}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {1990}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IM2_1990_35_3_a4/} }
A. I. Degtyarev. Classification of surfaces of degree four having a~nonsimple singular point. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 607-627. https://geodesic-test.mathdoc.fr/item/IM2_1990_35_3_a4/
[1] Arnold V. I., Varchenko A. H., Gusein-zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 ; т. 2., Наука, М., 1984, В 2-х т. | MR
[2] Degtyarev A. I., Mnogochlen Aleksandera algebraicheskoi giperpoverkhnosti, Preprint LOMI R-11-86, LOMI, L., 1986 | MR
[3] Degtyarev A. I., Izotopicheskaya klassifikatsiya kompleksnykh ploskikh proektivnykh krivykh stepeni pyat, Preprint LOMI R-3-87, LOMI, L., 1987
[4] Bruce J. W., Wall C. T. C., “On the classification of cubic surfaces”, J. London Math. Soc., 19 (1979), 245–256 | DOI | MR | Zbl
[5] Swinnerton-Dyer, “An enumeration of ail varieties of degree $4$”, Amer. J. Math., 95 (1973), 403–418 | DOI | MR | Zbl
[6] Urabe T., “On quartic surfaces and sextic curves with singularities of type $\widetilde{E}_8$, $T_{2,3,7}$, $\widetilde{E}_12$”, Publ. Inst. Math. Sci. Kyoto Univ., 20 (1984), 1185–1245 | DOI | MR | Zbl
[7] Urabe T., “On quartic surfaces and sextic curves with certain singularities”, Proc. Japan Acad. Ser. A., 59 (1983), 434–437 | DOI | MR | Zbl
[8] Urabe T., “Classification of non-normal quartic surfaces”, Tokyo J. Math., 9 (1986), 265–295 | MR | Zbl
[9] Urabe T., “Elementary transformations of Dynkin graphs and singularities of quartic surfaces”, Invent. Math., 87 (1987), 549–572 | DOI | MR | Zbl
[10] Zariski O., Algebraic surfaces, Springer-Verlag, 1971 | MR | Zbl