Locally polynomial rings and symmetric algebras
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 472-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that every finitely generated locally polynomial algebra over a ring having only a finite number of minimal prime ideals is isomorphic to the symmetric algebra of a finitely generated projective module. We also obtain some other results on the structure of locally polynomial algebras. Bibliography: 6 titles.
@article{IM2_1977_11_3_a1,
     author = {A. A. Suslin},
     title = {Locally polynomial rings and symmetric algebras},
     journal = {Izvestiya. Mathematics },
     pages = {472--484},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_1977_11_3_a1/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - Locally polynomial rings and symmetric algebras
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 472
EP  - 484
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_1977_11_3_a1/
LA  - en
ID  - IM2_1977_11_3_a1
ER  - 
%0 Journal Article
%A A. A. Suslin
%T Locally polynomial rings and symmetric algebras
%J Izvestiya. Mathematics 
%D 1977
%P 472-484
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_1977_11_3_a1/
%G en
%F IM2_1977_11_3_a1
A. A. Suslin. Locally polynomial rings and symmetric algebras. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 472-484. https://geodesic-test.mathdoc.fr/item/IM2_1977_11_3_a1/

[1] Abhyankar S., Eakin P., Heinzer W., “On the uniqueness of the coefficient ring in a polynomial ring”, Journal of Algebra, 23:2 (1972), 310–342 | DOI | MR | Zbl

[2] Burbaki N., Algebra. Lineinaya i polilineinaya algebra, Fizmatgiz, M., 1962

[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[4] Eakin P., Heinzer W., “A cancellation problem for rings”, Lect. Notes Math., 311, 1972, 61–77 | MR

[5] Eakin P., Silver J., “Rings which are almost polynomial rings”, Trans. Amer. Math. Soc., 174 (1972), 425–449 | DOI | MR

[6] Quillen D., “Projektive modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl