An orthogonal basis of a~local field
Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1225-1237.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective construction is given of an orthogonal basis for a local field, starting from the Shafarevich basis.
@article{IM2_1973_7_6_a1,
     author = {S. V. Vostokov},
     title = {An orthogonal basis of a~local field},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1237},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1973},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IM2_1973_7_6_a1/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - An orthogonal basis of a~local field
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1225
EP  - 1237
VL  - 7
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IM2_1973_7_6_a1/
LA  - en
ID  - IM2_1973_7_6_a1
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T An orthogonal basis of a~local field
%J Izvestiya. Mathematics 
%D 1973
%P 1225-1237
%V 7
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IM2_1973_7_6_a1/
%G en
%F IM2_1973_7_6_a1
S. V. Vostokov. An orthogonal basis of a~local field. Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1225-1237. https://geodesic-test.mathdoc.fr/item/IM2_1973_7_6_a1/

[1] Hasse H., “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak{p}$ von $p$”, J. Reine und Angew. Math., (176) (1936), 174–183 | Zbl

[2] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl

[3] Kneser M., “Zum expliziten Reziprozitätsgesetz von Safarevič”, Math. Nach., 6:2 (1951), 89–96 | DOI | MR | Zbl

[4] Hasse H., Zahlentheorie, Berlin, 1963 | MR